Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T23:59:43.300Z Has data issue: false hasContentIssue false

Thermal effects of hot electron halo in a laser-imploded Z-layered plasma pellet

Published online by Cambridge University Press:  09 March 2009

V. Palleschi
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., via del Giardino, 7, 56127 Pisa, Italy
D. P. Singh
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., via del Giardino, 7, 56127 Pisa, Italy
M. A. Harith
Affiliation:
Cairo University, Faculty of Science, Department of Physics, Cairo, Egypt
M. Vaselli
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., via del Giardino, 7, 56127 Pisa, Italy

Abstract

Coupling of the core with the surrounding corona of hot electrons produced around the plasma critical surface in a spherically symmetric laser-imploded Z-layered plasma target has been analyzed. Considering that the energy equipartition exists between the cold electrons of the core and the hot coronal electrons in the core–corona overlapping region, the analytic expression for core–corona coupling has been derived. The efficiency of heat transfer from the hot corona to the cold core depends on the laser wavelength, mean electron temperature in the ablation region, and the width of the Z-layer in the plasma pellet. Numerical results indicate that short wavelength lasers are favorable for efficient heating of the core by the surrounding hot corona. The core-corona coupling increases primarily with the mean electron temperature up to a certain extent and beyond that further laser flux transfer to the hot corona results in decoupling of the core from the corona. The presence of Z-layer is likely to reduce the electron mean free path in the ablation region and affects the laser wavelength scaling of the core-corona coupling. It is also found to have positive influence on the maximum coupling efficiency of the core with the hot corona.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, A. R. 1985 Phys. Fl. 28, 2007.CrossRefGoogle Scholar
Brueckner, K. A. & Jorna, S. 1974 Rev. Mod. Phys. (USA), 46(2), 325.CrossRefGoogle Scholar
Brueckner, K. A. & Lee, Y. T. 1979 Nucl. Fusion, 19, 1431.CrossRefGoogle Scholar
Ebrahim, N. A. et al. 1979 Phys. Rev. Lett., 43, 1995.CrossRefGoogle Scholar
Fabbro, R. & Mora, P. 1982 Phys. Lett., 90A, 48.CrossRefGoogle Scholar
Fabbro, R. et al. 1982a Phys. Rev., A26, 2289.CrossRefGoogle Scholar
Friedberg, J. P. et al. , 1972 Phys. Rev. Lett., 28, 795.CrossRefGoogle Scholar
Goldsack, J. J. et al. , 1982 Optics Comm., 42, 55.CrossRefGoogle Scholar
Hora, H. 1969 Phys. Fl. 12, 182.CrossRefGoogle Scholar
Kephart, J. F., Godwin, R. P. & McCall, G. H. 1974 Appl. Phys. Lett., 25, 108.CrossRefGoogle Scholar
Kidder, R. E. & Zink, J. W. 1972 Nucl. Fusion, 12, 325.CrossRefGoogle Scholar
Kolodner, P. & Yablonyitch, E. 1976 Phys. Rev. Lett., 37, 1754.CrossRefGoogle Scholar
Mason, R. J. 1981 Phys. Rev. Lett., 47, 652.CrossRefGoogle Scholar
Mulser, P. 1979 in Laser Plasma Interactions, Cairns, R. A. and Sanderson, J. J. eds.Google Scholar
Mulser, P. & Van Kessel, C. 1977 Phys. Rev. Lett. 38 (16), 902.CrossRefGoogle Scholar
Singh, D. P., Herrera, J. J. E. & Vaselli, M. 1989 Laser Part. Beams, 7 (part 1), 111.CrossRefGoogle Scholar
Spitzer, L. Jr. 1962 Physics of Fully Ionised Gases (Interscience, New York), 2nd Ed.Google Scholar