Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T18:07:07.707Z Has data issue: false hasContentIssue false

Thermal behavior change in the self-focusing of an intense laser beam in magnetized electron-ion-positron plasma

Published online by Cambridge University Press:  11 April 2014

N. Sepehri Javan*
Affiliation:
Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran
M. Hosseinpour Azad
Affiliation:
Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran
*
Address correspondence and reprint requests to: N. Sepehri Javan, Department of physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran. E-mail: [email protected]

Abstract

Self-focusing of an intense circularly-polarized laser beam in a hot electron-positron-ion magneto-plasma is studied. Using a relativistic fluid model, nonlinear equation describing laser-plasma interaction in the quasi-neutral approximation is derived. Expanding nonlinear current density in terms of normalized vector potential and saving only the parabolic terms, we investigated the self-focusing phenomenon for right- and left-hand circularly polarized laser beams. The evolution of laser beam spot size with Gaussian profile is considered. Effects of the external magnetic field, fraction of electron-positron pairs, and also the kind of polarization on the self-focusing property are studied. It is shown that a mixture of electron-positron pairs to the ion-electron plasma modifies the behavior of plasma with respect to the external magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhurov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609634.Google Scholar
Berezhiani, V.I., Tskhakaya, D.D. & Shukla, P.K. (1992). Pair production in a strong wakefield driven by an intense short laser pulse. Phys. Rev. A 46, 66086612.Google Scholar
Cumberbatch, E. (1970). Self-focusing in non-linear optics. J. Inst. Maths. Appl. 6, 250312.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas, IEEE J. Quan.Electr. 33, 18791914.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Jha, P., Mishra, R.K., Upadhyay, A.K. & Raj, G. (2007). Spot-size evolution of laser beam propagating in plasma embedded in axial magnetic field. Phys. Plasmas 14, 114504114507.Google Scholar
Jha, P., Mishra, R.K., Upadhyaya, A.K. & Raj, G. (2006). Self-focusing of intense laser beam in magnetized plasma. Phys. Plasmas 13, 103102103107.Google Scholar
Jha, P., Kumar, P., Raj, G. & Upadhyaya, A.K. (2005). Modulation instability of laser pulse in magnetized plasma. Phys. Plasmas 12, 123104123110.Google Scholar
Krushelnick, K., Ting, S., Moore, C.I., Burris, H.R., Esarey, E., Sprangle, P. & Baine, M. (1997). Plasma channel formation and guiding during high intensity short pulse laser plasma experiments. Phys. Rev. Lett. 78, 40474050.Google Scholar
Lemoff, B.E., Yin, G.Y., Gordan Iii, C.L., Barty, C.P.J. & Harris, S.E. (1995). Demonstration of a 10-hz, femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 15741577.Google Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.Google Scholar
Michel, F.C. (1982). Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.CrossRefGoogle Scholar
Milchberg, H.M., Durfee Iii, C.G. & Macilrath, T.J. (1995). High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.Google Scholar
Mori, W.B. (1997). The physics of the nonlinear optics of plasmas at relativistic intensities. IEEE J. Quan. Electr. 33, 19421953.Google Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.Google Scholar
Perkins, F.W. & Valeo, E.J. (1974). Thermal self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 32, 12341237.Google Scholar
Rao, N.N., Shukla, P.K. & Yu, M.Y. (1984). Strong electromagnetic pulses in magnetized plasmas. Phys. Fluids 27, 26642668.Google Scholar
Rees, M.J. (1983). The Very Early Universe (Gibbons, G.W., Hawking, S.W. & Siklos, S., Eds.). Cambridge, UK: Cambridge University Press.Google Scholar
Sepehri Javan, N. & Adli, F. (2013). Relativistic nonlinear dynamics of an intense laser beam propagating in a hot electron-positron magnetoactive plasma. Phys. Plasmas 20, 062301062312.Google Scholar
Sepehri Javan, N. & Nasirzadeh, Z.H. (2012). Self-focusing of circularly polarized laser pulse in the hot magnetized plasma in the quasi-neutral limit. Phys. Plasmas 19, 112304112310.Google Scholar
Sepehri Javan, N. (2013). Competition of circularly polarized laser modes in the modulation instability of hot magnetoplasma. Phys. Plasmas 20, 012120012126.Google Scholar
Shukla, P.K. (1999). Generation of wakefields by elliptically polarized laser pulses in a magnetized plasma. Phys. Plasmas 6, 13631365.Google Scholar
Shukla, P.K., Marklund, M. & Eliasson, B. (2004). Nonlinear dynamics of intense laser pulses in a pair plasma. Phys. Lett. A 324, 193197.Google Scholar
Shukla, P.K., Rao, N.N., Yu, M.Y. & Tsintsadze, N.L. (1986). Relativistic nonlinear effects in plasmas. Phys. Rep. 138, 1149.Google Scholar
Sprangle, P., Esarey, E. & Ting, A. (1990). Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 20112014.Google Scholar
Surko, C.M., Levethal, M., Crane, W.S., Passne, A. & Wysocki, F. (1986). Use of positrons to study transport in tokamak plasmas. Rev. Sci. Instrum. 57, 18621867.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R. (1994). Ignition and high gain with ultrapowerful lasers. J. Phys. Plasmas 1, 16261635.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.Google Scholar
Varshney, M.A., Sen, S., Rathore, B. & Varshney, D. (2011). Propagation regimes of intense circularly polarized laser beam in magnetoactive plasma. Optik 122, 395401.Google Scholar
Wagner, R., Chen, S.Y., Maksimonchuk, A. & Unstadter, D. (1997). Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 31253128.Google Scholar
Zhou, J., Peatross, J., Murnane, M.M., Kapteyn, H. & Christov, I.P. (1996). Enhanced high harmonic generation using 25 femtosecond laser pulses. Phys. Rev. Lett. 76, 752755.Google Scholar