Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T04:27:47.325Z Has data issue: false hasContentIssue false

Theoretical and experimental study of complete spectral series as a diagnostic tool for dense plasmas

Published online by Cambridge University Press:  09 March 2009

B. d'Etat
Affiliation:
Laboratoire de Spectronomie des Gaz et des Plasmas and GRECO Interaction Laser-Matière, Département de Recherches Physiques, UA 71 CNRS, Université Pierre et Marie Curie, 4 place, Jussieu, 75252 Paris Cedex 05, France
J. Grumberg
Affiliation:
Laboratoire de Spectronomie des Gaz et des Plasmas and GRECO Interaction Laser-Matière, Département de Recherches Physiques, UA 71 CNRS, Université Pierre et Marie Curie, 4 place, Jussieu, 75252 Paris Cedex 05, France
E. Leboucher
Affiliation:
Laboratoire de Spectronomie des Gaz et des Plasmas and GRECO Interaction Laser-Matière, Département de Recherches Physiques, UA 71 CNRS, Université Pierre et Marie Curie, 4 place, Jussieu, 75252 Paris Cedex 05, France
H. Nguyen
Affiliation:
Laboratoire de Spectronomie des Gaz et des Plasmas and GRECO Interaction Laser-Matière, Département de Recherches Physiques, UA 71 CNRS, Université Pierre et Marie Curie, 4 place, Jussieu, 75252 Paris Cedex 05, France
A. Poquérusse
Affiliation:
Laboratoire de Physique des Milieux Ionisés and GRECO Interaction Laser-Matière, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Abstract

A theoretical and experimental study of line broadening and merging is presented and suggested for diagnosis of high density laser plasmas. For densities larger than 1022 cm−3 the hydrogenlike sequence is reduced to four lines for the emitter ion with ZE = 9. The perturbation effects on the latter come mainly from the interaction with plasma ions and electrons (Stark effect, multipolar interactions, ionization by tunnel effect, polarization line shift …).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranger, M. & Moser, B. 1959 Phys. Rev. 115, 3; 1960 Phys. Rev. 118, 626.CrossRefGoogle Scholar
Brush, S. G., Shalin, M. L. & Teller, E. 1966 J. Chem. Phys. 45, 2102CrossRefGoogle Scholar
Davis, J. & Blaha, M. 1982. J. Quant. Spectrosc. Radiat. Transfer. 27, 301.Google Scholar
d'Etat, B. & Nguyen, H. 1985 Spectral Line Shapes, invited paper 3 p. 209F. Rostas, W. de Gruyter & Co Berlin New York.Google Scholar
Griem, H. R., Blaha, M. & Kepple, P. C. 1979 Phys. Rev. A19, 2421.CrossRefGoogle Scholar
Held, B., Deutsch, C. & Gombert, M. M. 1984 Phys. Rev. A29, 880.CrossRefGoogle Scholar
Henry, B. I. 1983 Laser and Particle Beams, 1, 11.CrossRefGoogle Scholar
Iglesias, C. A. & Hooper, C. F. Jr 1983 Phys. Rev. A28, 361.CrossRefGoogle Scholar
Leboucher, E., Koenig, M., d'Etat, B., Terray, L. & Nguyen, H. 1985 Spectral line shapes 3 p. 251F. Rostas, W. de Gruyter & Co Berlin New York.Google Scholar
de Luze, O. 1984 Thesis Paris.Google Scholar
Nguyen, H., d'Etat, B. & Coulaud, G. 1981 Phys. Lett. A85, 327.Google Scholar
Nguyen, H., d'Etat, B., Grumberg, J., Caby, M., Leboucher, E. & Coulaud, G. 1982 Phys. Rev. A25, 891.Google Scholar
Nguyen, H., Koenig, M. & Coulaud, G. 1984 Phys. Lett. 106A, 34.CrossRefGoogle Scholar
Nguyen, H., Koenig, M., Benredjem, D., Caby, M. & Coulaud, G. 1986 Phys. Rev. A33, 1279.CrossRefGoogle Scholar
Poquerusse, A. 1986 Opt. Comm. 58, 108.CrossRefGoogle Scholar
Salpeter, E. E. 1954 Australian J. Phys. 7, 373.CrossRefGoogle Scholar
Sholin, G. V. 1969 Opt. and Spectrosc. XXVI, 275.Google Scholar
Skupsky, S. 1980 Phys. Rev. A21, 1316.CrossRefGoogle Scholar
Virmont, J., Geindre, J. P., Grandjouan, N. & Gauthier, J. C. 1980 Internal Report GRECO ILM.Google Scholar