Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T04:49:22.298Z Has data issue: false hasContentIssue false

Theoretical and experimental studies of material radiative properties and their applications to laser and heavy ion inertial fusion

Published online by Cambridge University Press:  10 February 2011

N. Yu. Orlov*
Affiliation:
Joint Institute for High Temperatures RAS, Institute for High Energy Density, Moscow, Russia
O.B. Denisov
Affiliation:
Joint Institute for High Temperatures RAS, Institute for High Energy Density, Moscow, Russia
O.N. Rosmej
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
D. Schäfer
Affiliation:
RheinAhrCampus Remagen, Institute for X-optics, Remagen, Germany
Th. Nisius
Affiliation:
RheinAhrCampus Remagen, Institute for X-optics, Remagen, Germany
Th. Wilhein
Affiliation:
RheinAhrCampus Remagen, Institute for X-optics, Remagen, Germany
N. Zhidkov
Affiliation:
All Russian Scientific Research Institute of Experimental Physics, RFNC-VNIIEF, Sarov, Russia
A. Kunin
Affiliation:
All Russian Scientific Research Institute of Experimental Physics, RFNC-VNIIEF, Sarov, Russia
N. Suslov
Affiliation:
All Russian Scientific Research Institute of Experimental Physics, RFNC-VNIIEF, Sarov, Russia
A. Pinegin
Affiliation:
All Russian Scientific Research Institute of Experimental Physics, RFNC-VNIIEF, Sarov, Russia
V. Vatulin
Affiliation:
All Russian Scientific Research Institute of Experimental Physics, RFNC-VNIIEF, Sarov, Russia
Y. Zhao
Affiliation:
Institute of Modern Physics, CAS, Lanzhou, China
*
Address correspondence and reprint requests to: N. Yu. Orlov, Joint Institute for High Temperatures RAS, Institute for High Energy Density, Izhorskaya. 13, Building 2, 125412, Moscow, Russia. E-mail: [email protected]

Abstract

Theoretical and experimental studies of radiative properties of substances heated by pulsed current devises or lasers and used as X-ray sources have been carried out depending on plasma conditions, and specific spectra of X-ray absorption and radiation for different materials have been calculated. Important features of the theoretical model, known as the ion model of plasma, are discussed. This model can be applied for calculations of the radiative properties of complex materials over a wide range of plasma parameters. For purposes of indirect-driven inertial fusion based on the hohlraum concept, an optimization method is used for the selection of an effective complex hohlraum wall material, which provides high radiation efficiency at laser interaction with the wall. The radiation efficiency of the resulting material is compared with the efficiency of other composite materials that have previously been evaluated theoretically. A similar theoretical study is performed for the optically thin X-pinch plasma produced by exploding wires. Theoretical estimations of radiative efficiency are compared with experimental data that have been obtained from measurements of X-pinch radiation energy yield using two exploding wire materials, NiCr and Alloy 188. It is shown that the theoretical results agree well with the experimental data. A symmetric multilayer X-pinch, where W and Mo wires are used, is as well considered. The theoretical explanation of experimental phenomena is discussed based on the W and Mo radiative spectra. The ion model was as well applied for interpretation of experimental results on opacities of CHO-plasma obtained via indirect heating of low density polymer layers by means of soft X-rays. The new diagnostics method based on the deformation of the of the Carbon absorption K-edge when foam layer is heated to plasma is discussed. The spectral coefficients for X-ray absorption in CHO-plasma are calculated in the photon energy region around the Carbon K-edge for different plasma temperatures and mean foam density. In this case, the Carbon K-edge position on the energy scale can be used for plasma temperature diagnostic.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamek, P., Renner, O., Drska, L., Rosmej, F.B. & Wyart, J.F. (2006). Genetic algorithms in spectroscopic diagnostics of hot dense plasmas. Laser Part. Beams 24, 511518.CrossRefGoogle Scholar
Bagnoud, V., Aurand, B., Blazevic, A., Borneis, S., Bruske, C., Ecker, B., Eisenbarth, U., Fils, J., Frank, A., Gaul, E., Goette, S., Haefner, C., Hahn, H., Harres, K., Heuck, H.-M., Hochhaus, D., Hoffmann, D.H.H., Javorková, D., Kluge, H.-J., Kuehl, T., Kunzer, S., Kreutz, M., Merz-Mantwill, T., Neumayer, P.,Onkels, E., Reemts, D., Rosmej, O., Roth, M., Stoehlker, T., Tauschwitz, A., Zielbauer, B., Zimmer, D. & Witte, K. (2010). Commissioning and early experiments of the PHELIX facility. Appl. Phys. B 100, 137150.CrossRefGoogle Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorogotovtsev, V.M. & Merkuliev, Y.A. (2003). Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets. Laser Part. Beams 21, 505509.Google Scholar
Bret, A. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269273.CrossRefGoogle Scholar
Callahan-Miller, D. & Tabak, M. (2000). Progress in target physics and design for heavy ion fusion. Phys. Plasmas 7, 20832091.Google Scholar
Chang, H.-K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. Hi. Energy Density Phys. 1, 312.Google Scholar
Denisov, O.B., Orlov, N.Yu., Gus'kov, S.Yu., Rozanov, V.B., Zmitrenkop, N.V. & Michailov, A.P. (2005). Modelling of the composition of materials for soft X-ray sources used in research on inertial confinement fusion. Plasma Phys. Rept. 31, 684689.CrossRefGoogle Scholar
Feynman, R., Metropolis, N. & Teller, E. (1949). Equations of state of elements based on the generalized Fermi-Thomas theory. Phys. Rev. 75, 7379.Google Scholar
Gus'kov, S.Y. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255260.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy loss of heavy ions in a plasma target. Phys. Rev. A, 42, 23132321CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Jacoby, J., Hoffmann, D.H.H., Laux, W., Mueller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stoeckl, C. & Wetzler, H. (1995). Stopping of heavy ions in a Hydrogen plasma. Phys. Rev. Lett. 74, 15501553.Google Scholar
Khalenkov, A.M., Borisenko, N.G., Kondrashov, V.N., Merkuliev, Yu.A., Limpouch, J. & Pimenov, V.G. (2006). Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density. Laser Part. Beams. 24, 283290.CrossRefGoogle Scholar
Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A., Nobile, A., Bernat, T., Cook, R., Letts, S., Takagi, M. & Harding, D. (2005). Laser targets compensate for limitations in inertial confinement fusion drivers. Laser Part. Beams 23, 475482.Google Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: Target fabrication, characterization, and delivery. Laser Part. Beams 23, 563571.CrossRefGoogle Scholar
Kyrala, G.A., Delamater, N., Wilson, D., Guzik, J., Haynes, D., Gunderson, M., Klare, K., Watt, R.W., Wood, W.M. & Varnum, W. (2005). Direct drive double shell target implosion hydrodynamics on OMEGA. Laser Part. Beams 23, 187192.CrossRefGoogle Scholar
Lindl, J.D. (1998). Inertial Confinement Fusion, AIP Press, Springer, New YorkGoogle Scholar
March, N.H., Kohn, W., Vashishta, P., Lundquist, S., Williams, A.R., Lang, N.D. & Von Barth, U. (1983). Theory of the Inhomogeneous Electron Gas. New York: Plenum Press.Google Scholar
Ng, A., Ao, T., Perrot, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.Google Scholar
Nikiforov, A. & Uvarov, V. (1973). Opisanie sostoyaniya veschestva v oblasti visokoch temperatur na osnove uravnenii samosoglasovannogo polya (Description of a substunce state at high temperatures based on the self-consistent field equations). Chislennye metodi mech. sploscnoi sredi. 4, 114117. (in Russian).Google Scholar
Orlov, N.Yu. (1987). Quantum statistical calculations of the properties of a mixture of chemical elements allowing for fluctuations in the occupation numbers of electron states. USSR Comput. Math. Mathem. Phys. 27, 6470.Google Scholar
Orlov, N.Yu. (1997). Ion model of a hot dense plasma. Laser and Part. Beams 15, 627634.CrossRefGoogle Scholar
Orlov, N.Yu. (1999). Calculation of the radiative opacity of a hot dense plasma. Contrib. Plasma Phys. 39, 177180.CrossRefGoogle Scholar
Orlov, N.Yu. (2002). Theoretical models of hot dense plasmas for inertial confinement fusion. Laser Part. Beams 20, 547549.CrossRefGoogle Scholar
Orlov, N.Yu. & Fortov, V.E. (2001). Comparative analysis of the theoretical models of a hot dense plasma and the density functional theory. Plasma Phys. Rept. 27, 4455.CrossRefGoogle Scholar
Orlov, N.Yu., Guśkov, S.Yu., Pikuz, S.A., Rozanov, V.B., Shelkovenko, T.A., Zmitrenko, N.V. & Hammer, D.A. (2007). Theoretical and experimental studies of the rsdiative properties of hot dense matter for optimizing soft X-ray sources. Laser Part. Beams 25, 19.CrossRefGoogle Scholar
Orzechowski, T.J., Rosen, M.D., Korblum, M.D., Porter, J.L., Suter, L.J., Thissen, A.R. & Wallace, R.J. (1996). The Rosseland Mean Opacity of a Mixture of Gold and Gadolinium at High Temperatures. Phys. Rev. Lett. 77, 35453548.Google Scholar
Rajagopal, A.K. (1980). Theory of inhomogeneous electron systems: spin-density-functional formalism. Advan. Chem. Phys. 41, 59193.Google Scholar
Rosmej, O.N., Orlov, N., Schäfer, D., Nisius, T., Wilhein, T., Suslov, N., Zhidkov, N. & Zhao, Y. (2009). Diagnostics of temperature and ionization degree of low Z foams in experiments on the ion stopping in plasma. GSI Scientific Report 2009, 391.Google Scholar
Rosmej, O.N., Zhidkov, N., Vatulin, V., Sulov, N., Kunin, A., Nisius, T., Zhao, Y., Wilhein, T. & Stöhlker, T. (2009). Experiments on heating of low Z targets by means of hohlraum radiation. GSI Scientif. Rept. 2009, 387.Google Scholar
Rozsnyai, B.F. (1972). Relativistic Hartree-Fock-Slater calculations for arbitrary temperature and matter density. Phys. Rev. 5, 11371149.CrossRefGoogle Scholar
Rozsnyai, B.F. (1982). An overview of the problems connected with theoretical calculations for hot plasmas. J. Quant. Spectrosc. Radiat. Transf. 27, 211217.Google Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.Google Scholar
Sasaki, T., Yano, Y., Nakajima, M., Kawamura, T. & Horioka, K. (2006). Warm-dense-matter studies using pulse-powered wire discharges in water. Laser Part. Beams 24, 371380.CrossRefGoogle Scholar
Shelkovenko, T.A., Pikuz, S.A., McBride, R.D., Knapp, P.F., Wilhelm, G., Sinars, D.B., Hammer, D.A. & Orlov, N.Yu. (2010). Symmetric multilayer megampere X-pinch. Plasma Phys. Rep. 36, 5066.CrossRefGoogle Scholar
Shelkovenko, T.A., Sinars, D.B., Pikuz, S.A. & Hammer, D.A. (2001). Radiographic and spectroscopic studies of X pinch plasma implosion dynamics and X-ray burst emission characteristics. Phys. Plasma 8, 13051318.Google Scholar
Someya, T., Miyazawa, K., Kikuchi, T. & Kawata, S. (2006). Direct-indirect mixture implosion in heavy ion fusion. Laser Part. Beams 24, 359369.Google Scholar
Suter, L., Rothenberg, J., Munro, D., Van Wonterghem, B., Haan, S. & Lindl, J. (1999). Feasibility of High Yield/High Gain NIF capsules. Proc. International Fusion Sciences and Applications. Paris: Elsevier, pp. 7481.Google Scholar
Vasina, E. & Vatulin, V. (2000). Experimental scheme for investigation of ion stopping in plasma-indirect laser target design. Report No. 2000–2. Germany: GSI.Google Scholar
Vergunova, G.A., Guśkov, S.Yu., Rozanov, V.B. & Rosmej, O.N. (2010). Formation of plane layer of plasma under irradiation by a soft X-ray source. J. Russian Laser Res. 31, 505513.Google Scholar
Wilhein, Th., Rehbein, S., Hambach, D., Berglund, M., Rymell, L. & Hertz, H.M. (1999). A slit grating spectrograph for quantitative soft X-ray spectroscopy. Rev. Sci. Instr. 70, 16941699.Google Scholar
Zakharov, S.M., Ivanenkov, G.V., Kolomenskii, S.A., Pikuz, S.A., Samokhin, A.I. & Ulshmid, I. (1982). Wire X-pinch in a high-current diode. Tech. Phys. Lett. 8, 456457.Google Scholar
Zeldovich, J.B. & Raizer, Y.P. (1966). Phizika udarnich voln i visokotemperaturnich gidrodinamicheskich yavlenii. M., Nauka. (in Russian).Google Scholar
Zou, X.B., Liu, R., Zeng, N.G., Han, M., Yuan, J.Q., Wang, X.X. & Zhang, G.X. (2006). Apulsed power generator for x-pinch experiments. Laser Part. Beams. 24, 503509.Google Scholar
Zschornack, G., Musiol, G. & Wagner, W. (1986). Dirac-Fock-Slater X-ray energy shifts and electron binding energy changes for all ion ground states in elements up uranium. Preprint ZfK-574, Zentralinstitut für Kernforschung Rossendorf bei Dresden.Google Scholar