Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T17:24:37.322Z Has data issue: false hasContentIssue false

Target technology development for the research of high energy density physics and inertial fusion at the RFNC–VNIIEF

Published online by Cambridge University Press:  08 December 2009

V.M. Izgorodin*
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
F.M. Abzaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.P. Balyaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.V. Bessarab
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
I.N. Cherkesova
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
V.V. Chulkov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
D.Yu. Fenoshin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
S.G. Garanin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
V.G. Gogolev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.G. Golubinsky
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
Yu.V. Ignat'ev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
D.A. Irinichev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.E. Lachtikov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.P. Morovov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
V.V. Nazarov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
G.P. Nikolaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.P. Pepelyaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.V. Pinegin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
I.M. Rojz
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
V.N. Romaev
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
E.Yu. Solomatina
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
M.G. Vasin
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
A.V. Veselov
Affiliation:
The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), Nizhniy Novgorod region, Russia
*
Address correspondence and reprint requests to: V.M. Izgorodin, The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), 607190 Sarov, Mira Street 37, Nizhniy Novgorod region, Russia. E-mail: [email protected]

Abstract

Results in some directions of the target technology for research on high energy density and laser fusion at the Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics for the last three years are presented. The results of development of optical and X-ray methods of characterization and manufacturing techniques of targets for studying the equation-of-state at high pressures and the condensed rare gas targets for the influence of pulse-repeated laser irradiation are given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrova, I.V., Belolipeskiy, A.A., Koresheva, E.R. & Tolokonnikov, S.M. (2008). Survivability of fuel laers with a different structure under conditions of the environmental effects: Physical concepts and modeling results. Laser Part. Beams 26, 643648.CrossRefGoogle Scholar
Altshul, A.D., Zhivotovsky, L.S. & Ivanov, L.P. (1987). Hydraulics and Aerodynamics. Moscow: Stroyizdat.Google Scholar
Andramanova, Yu.V., Veselov, A.V., Zhidkov, N.V., Ivanin, I.A., Ignat'ev, Yu.V., Izgorodin, V.M., Kirillov, G.A., Komleva, G.V., Makarov, M.Yu., Medvedev, E.F., Moroovov, A.P., Nikolaev, G.P., Pinegin, A.V., Romaev, V.N., Solomatina, E.Yu., Tatsenko, M.Yu., Tenyaev, B.N., Cherkesova, I.N. & Yukhimchuk, A.A. (1999). The technology of indirectly irradiated targets for inertial fusion research at the Russian Federal Nuclear Center-VNIIEF. Proc. First Inter. Conf. Inertial Fusion Sciences and Applications, pp. 891896. Paris: Elsevier.Google Scholar
Andreev, N.F., Bespalov, V.I., Bredikhin, V.I., Garanin, S.G., Ginsburg, V.N., Dvorkin, K.L., Katin, V.E., Korytin, A.I., Lozhkarev, V.V., Palashov, O.V., Rukavishnikov, N.N., Sergeev, A.M., Sukharev, S.A., Freidman, G.I., Khazanov, E.A. & Yakovlev, I.V. (2004). The new scheme of petawatt laser on the basis of non-degenerate parametrical amplification chirped impulses in crystals. Rus. Phys. JETP Lett. 79, 178182.Google Scholar
Annenkov, V.I., Bagretsov, V.A., Bezuglov, V.G., Vinogradskii, L.M., Gaidash, V.A., Galakhov, I.V., Gasheev, A.S., Guzov, I.P., Zadorozhnyi, V.I., Eroshenko, V.A., Il'in, A.Yu., Kargin, V.A., Kirillov, G.A., Kochemasov, G.G., Krotov, V.A., Kuz'michev, Yu.P., Lapin, S.G., L'vov, L.V., Mochalov, M.R., Murugov, V.M., Osin, V.A., Pankratov, V.I., Pegoev, I.N., Punin, V.T., Ryadov, A.V., Senik, A.V., Sobolev, S.K., Khudikov, N.M., Khrustalev, V.A., Chebotar', V.S., Cherkesov, N.A. & Shemyakin, V.I. (1991). A pulsed “Iskra-5” laser with the power of 120 TW. Sov. Quan. Electron 18, 536537.Google Scholar
Bethe, Y.A. & Ashkin, J. (1953). Passage of radiation through substance. In Experimental Nuclear Physics (Segre, E., Eds.), Vol. 1, pp. 143215. New York: xxxx.Google Scholar
Beznasyuk, N.N., Galakhov, I.V., Garanin, S.G., Grigorovich, S.G., Eroshenko, V.A., Il'kaev, R.I., Kirillov, G.A., Kochemasov, , Murugov, V.M., Rukavishnikov, N.N. & Sukharev, S.A. (2002). High-power neodimium phosphate glass laser facility “Luch” – prototype of a module of the “Iskra-6” facility. Proc. Russian Federal Nuclear Center-VNIIEF 3, 232247.Google Scholar
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.CrossRefGoogle Scholar
Chatain, D., Perin, J.P., Bonnay, P., Bouleau, E., Chichoux, M., Communal, D., Manzagol, J., Viargues, F., Brisset, D., Lamaison, V. & Paquignon, G. (2008). Cryogenic systems for inertial fusion energy. Laser Part. Beams 26, 517523.CrossRefGoogle Scholar
Cook, R. (1994). Production of hollow microspheres for inertial confinement fusion experiments. Proc MRS symp. 372, 101112.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, JD., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Cormer, S.B. (1980). The photo dissociation lasers for dirigible fusion. Izvestia AN SSSR, ser. Phys. 44, 20022017.Google Scholar
de Groot, Peter & Colonna de Lega, X., Kramer, J. & Turzhitsky, M. (2002). Determination of fringe order in white-light interference microscopy. Appl. Opt. 41, 4571.CrossRefGoogle ScholarPubMed
de Groot, Peter & Colonna de Lega, X. (2004). Signal modeling for low-coherence height-scanning interference microscopy. Appl. Opt. 43, 4821.CrossRefGoogle ScholarPubMed
Deck, L. & de Groot, Peter (1994). High-speed noncontact profiler based on scanning white-light interferometry. Appl. Opt. 33, 7334.CrossRefGoogle ScholarPubMed
Diefendorff, K. (2000). Extreme Lithography. Microdesign Resources Microprocessor Report, June 19.Google Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Freischlad, K. & Koliopoulos, C.L. (1990). Fourier description of digital phase-measuring interferometry. J. Opt. Soc. Am. A 7, 542551.CrossRefGoogle Scholar
Frenkel, Ja.I. (1975). The Kinetic Theory of Liquids. Leningrad: Nauka.Google Scholar
Gaidash, V.A., Kirillov, G.A., Cormer, S.B., Lapin, S.G., Shemyakin, V.I. & Shurygin, V.K. (1974). The C3F7J laser facility with energy of radiation of 20 J and impulse duration of 3 ns. Sov. Phys. JETP Lett. 20, 243246.Google Scholar
Galakhov, I.V., Garanin, S.G., Eroshenko, V.A., Kirillov, G.A., Kochemasov, G.G., Murugov, V.M., Rukavishnikov, N.N. & Sukharev, S.A. (1999). Concept of the Iskra-6 Nd-laser facility. Fusion Engin. Des. 44, 5156.CrossRefGoogle Scholar
Gunn, G.J., Yakovlev, V.I., Prudkovskij, B.A., Galkin, A.M., Ryzhov, A.F., Golovin, M.F. & Brunilin, A.I. (1974). Pressing of Aluminum Alloys (Mathematical Modeling and Optimization). Moscow: Metallurgy.Google Scholar
Hansson, , Bjorn, A.M., Rymell, L., Berglund, M., Hemberg, O., Janin, E., Thoresen, J., Mosesson, S., Wallin, J. & Herz, H. (2002). Status of the liquid-xenon-jet laser-plasma source for EUV lithography. Proc. SPIE. 4688, 102.CrossRefGoogle Scholar
Huang, T. & Parrich, W. (1986). X-ray fluorescence analysis of multplei–Layer thin films. Adv. X-ray anal. 29, 395402.Google Scholar
Ignat'ev, Yu.V., Vasin, M.G., Veselov, A.V., Izgorodin, V.M., Lakhtikov, A.E. & Moroovov, A.P. (2002). Measurement of argon in the laser fusion targets. Proc. SPIE 5228, 651655.Google Scholar
Il'kaev, R.I. & Garanin, S.G. (2006). Investigation of the fusion problem on powerful laser installations. Vestnik RAN 76, 503513.Google Scholar
Koenig, M., Bondenne, J.M., Batini, D., Benuzzi, A., Bossi, S., Temporal, M. & Atzeni, S. (1995). Relative consistency of equations of state by laser driven shock waves. Phys. Rev. Lett. 74, 2260.CrossRefGoogle ScholarPubMed
Koresheva, E.R., Aleksandrova, I.V., Koshelev, E.L., Nikitenko, A.I., Timasheva, T.P., Tolokonnikov, S.M., Belolipetskiy, A.A., Kapralov, V.G., Sergeev, V.T., Blazevic, A., Weyrich, K., Varentsov, D., Tahir, N.A., Udrea, S. & Hoffmann, D.H.H. (2009). A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR. Laser Part. Beams 27, 255272.CrossRefGoogle Scholar
Krasnikov, V.F. (1976). Technology of miniature manufactures. Moscow: Mashinostroenie.Google Scholar
Krause, M.O. (1979). Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data 8, 307.CrossRefGoogle Scholar
Laguiton, D. & Parrich, W. (1977). Simultaneous determination of cmposition and mass thickness of thin films by quantitative X-ray fluorescence analysis. Anal. Chem. 49, 11521156.CrossRefGoogle Scholar
Mantler, M. (1986). X-ray fluorescence analysis of multiple–layer films. Anal. Chim. Acta. 188, 2535.CrossRefGoogle Scholar
Mantler, M. (1987). Advances in fundamental parameter methods for quantitative XRFA. Advan. X-Ray Anal. 30, 97104.Google Scholar
Matsuyama, M., Murai, T. & Watanabe, K. (2002). Quantitative measurement of surface tritium by (-ray-induced X-ray spectrometry. Fusion Sci. Techn. 41, 505.CrossRefGoogle Scholar
Meyertervehn, J., Witkowski, S., Bock, R., Hoffmann, D.H.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy-ion fusion at the gesellschaft-fur-schwerionenforschung. Phys. Fluids B 2, 13131317.CrossRefGoogle Scholar
Mukhin, K.N. (1974). Experimental Nuclear Physicists. Moscow: Aтомиздат.Google Scholar
Nazarov, V.V. (1991). Simultaneous definition of thickness and element structure of a material by means of a X-ray fluorescent method. Zavodskaya Lab. 57, 2729.Google Scholar
Nemets, О.F. & Hofman, J.V. (1975). Manual on Nuclear Physics. Kiev: Naukova Dumka.Google Scholar
Pavlova, L.A., Belozerov, O.Yu., Paradina, L.F. & Suvorov, L.F. (2000). The X-ray Electron Probe Analysis of Microobjects. Novosibirsk: Nauka.Google Scholar
Pratt, R.H., Tseng, H.K., Lee, C.M. & Lynn, K. (1977). Bremsstrahlung energy spectra from electrons kinetic energy 1 keV ≤ T1 ≥ 2000 keV incident on neutral atoms 2 ≤ Z ≥ 92. Atomic Data Nuc. Data Tables 20, 175.CrossRefGoogle Scholar
Reed, S.J.B. (1975). Electron Microprobe Analysis. Cambridge: Cambridge University Press.Google Scholar
Samoilovich, G.S. (1990). Hydro-Gasdinamics. Moscow: Mashinostroenie.Google Scholar
Shmayda, C.R., Shmayda, W.T. & Kherani, N.P. (2002). Monitoring tritium activity on surfaces: Recent development. Fusion Sci. Techn. 41, 500.CrossRefGoogle Scholar
Sinclair, M.B., de Boer, M.P. & Corwin, A.D. (2005). Long-working-distance incoherent-light interference microscope. Appl. Opt. 44, 7714.CrossRefGoogle ScholarPubMed
Tahir, N.A., Kim, V.V., Matvechev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26, 273286.CrossRefGoogle Scholar
Vasin, M.G., Ignat'ev, Yu.V., Lachtikov, A.E., Morovov, A.P., Nazarov, V.V. & Trahtenberg, L.I. (2007). X-ray fluorescence analysis with sample excitation using radiation from secondary target. X-ray Spectro. 36, 270274.Google Scholar
Veselov, A.V., Drozhin, V.S., Druzhinin, A.A., Izgorodin, V.M., Ilyushechkin, B.F., Kirillov, G.A., Komleva, G.V., Korochkin, A.M., Medvedev, E.F., Nikolaev, G.P., Pikulin, I.V., Pinegin, A.V., Punin, V.T., Romaev, V.N., Sumatokhin, V.L., Tarasova, N.N., Tachyaev, G.V. & Cherkesova, I.N. (1995). ICF target technology at the Russian Federal Nuclear Center. Fusion Techn. 28, 18381843.CrossRefGoogle Scholar
Veselov, A.V., Dudin, A.V., Komleva, G.V. & Pukhov, Y.D. (1981). The interferometric method of measurement of gas quantity in fusion targets. Sov. Quan. Electr. 8, 11111113.Google Scholar
Weinstein, B.W. & Weir, J.T. (1980). Measurement of tracer elements in inertial fusion target fuel. J. Appl. Phys. 51, 56045609.CrossRefGoogle Scholar
Yang, H., Nagai, K., Nakai, N. & Norimatsu, T. (2008). Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution. Laser Part. Beams 26, 449453.CrossRefGoogle Scholar