Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T23:15:13.872Z Has data issue: false hasContentIssue false

Systematic ion-atom interaction cross sections and stopping powers in the plane wave Born approximation

Published online by Cambridge University Press:  09 March 2009

Eugene J. McGuire
Affiliation:
Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185–1187

Abstract

In Chapter 14 of Atomic and Molecular Processes, Bates (1962) outlines a procedure for calculating ion-atom cross sections in the plane-wave Born approximation (pwBa). The procedure involves integration over the product of elastic scattering factors or generalized oscillator strengths for excitation or ionization from both projectile and target. We have programmed this procedure to use our large database of excitation and ionization generalized oscillator strengths (GOS). The program calculates both cross sections (CS) and stopping power (SP) on a subshell basis. The calculations are done in the center of mass system where the distinction between projectile and target is lost. Thus, the SP in the laboratory frames of both target and projectile are symmetrical in nuclear and net charges. The traditional simple modeling of SP, using scaled proton SP and an effective projectile charge, is unsymmetrical, and therefore dubious as a guide for extrapolating to ion-ion SP. At high projectile energy, the SP curves, as a function of increasing projectile charge, approach the scaled protonic result from above, indicating that lowering the average charge raises the SP, in contradiction to the traditional picture that the projectile SP increases with increasing effective charge (assuming there is an underlying physical reality relating the effective and average charge). Comparison with experimental SP data (mostly from 30 years ago) shows generally poor agreement for Li ion projectiles in the 1–10 MeV range.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, S.K. et al. 1960 Phys. Rev. 120, 1266.CrossRefGoogle Scholar
Allison, S.K. et al. 1965 Phys. Rev. 138, A688.Google Scholar
Barnett, C.F. & Stier, P.M. 1958 Phys. Rev. 109, 385.CrossRefGoogle Scholar
Bates, D.R. 1962 In Atomic and Molecular Processes, Bates, D.R., ed. (Academic Press, New York).Google Scholar
Bethe, H.A. 1930 Ann. Phys. (Leipzig) 5, 325.Google Scholar
Bethe, H.A. 1932 Z. Phys. 76, 293.CrossRefGoogle Scholar
Chilton, A.B. et al. 1954 Phys. Rev. 93, 413.CrossRefGoogle Scholar
Dmitriev, I.S. et al. 1962 Zh. Eksp. Teor. Fiz. 42, 16 [Sov. Phys.-JETP, 15, 11].Google Scholar
Gillespie, G.H. 1982 Phys. Rev. 26, 2421.CrossRefGoogle Scholar
Horsdal Pedersen, E. & Hvelplund, P.J. 1973 Phys. B 6, 1277.CrossRefGoogle Scholar
Jalin, R. et al. 1973 J. Chem. Phys. 59, 952.CrossRefGoogle Scholar
Lea, J.D. 1963 Dissertation (Univ. Texas, Austin).Google Scholar
McGuire, E.J. 1971 Phys. Rev. A 3, 267.CrossRefGoogle Scholar
McGuire, E.J. 1982 Phys. Rev. A 26, 1858.CrossRefGoogle Scholar
McGuire, E.J. 1984 Phys. Rev. A 29, 3429.CrossRefGoogle Scholar
McGuire, E.J. 1995 (to be published).Google Scholar
Neill, P.A. et al. 1983 J. Phys. B 16, 2185.CrossRefGoogle Scholar
Nikolaev, V.S. & Dmitriev, I.S. 1968 Phys. Lett. A 28, 277.CrossRefGoogle Scholar
Pivovar, L.I. et al. 1970 Zh. Eksp. Teor. Fiz. 59, 19 (Sov. Phys.-JETP 32, 11).Google Scholar
Puckett, J.L. et al. 1969 Phys. Rev. 178, 271.CrossRefGoogle Scholar
Reynolds, H.K. et al. 1953 Phys. Rev. 92, 742.CrossRefGoogle Scholar
Teplova, Ya. A. et al. 1962 Zh. Eksp. Teor. Fiz. 42, 44 (Sov. Phys.-JETP 15, 31).Google Scholar
To, K.X. & Drouin, R. 1976 Phys. Scr. 14, 277.Google Scholar
Wittkower, A.B. et al. 1967a Proc. Phys. Soc. 90, 581.CrossRefGoogle Scholar
Wittkower, A.B. et al. 1967b Proc. Phys. Soc. 91, 862.CrossRefGoogle Scholar