Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-07T20:02:37.772Z Has data issue: false hasContentIssue false

Survivability of fuel layers with a different structure under conditions of the environmental effects: Physical concept and modeling results

Published online by Cambridge University Press:  19 November 2008

I.V. Aleksandrova*
Affiliation:
P. N. Lebedev Physical Institute of RAS, Moscow, Russia
A.A. Belolipetskiy
Affiliation:
A. A. Dorodnitsin Computing Center of RAS, Moscow, Russia
E.R. Koresheva
Affiliation:
P. N. Lebedev Physical Institute of RAS, Moscow, Russia
S.M. Tolokonnikov
Affiliation:
P. N. Lebedev Physical Institute of RAS, Moscow, Russia
*
Address correspondence and reprint requests to: I.V. Aleksandrova, P. N. Lebedev Physical Institute of RAS, Moscow, Russia. E-mail: [email protected]

Abstract

This report addresses the physical concept and the results of mathematical modeling of cryogenic layer degrading caused by its radiation heating during direct drive target injection into the reaction chamber. Special attention is paid to the influence of a solid layer structure on the roughening of the layer surface that is of critical importance for the development of target injection scenario.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrova, I.V., Bazdenkov, S.V. & Chtcherbakov, V.I. (2002). Rapid fuel layering inside moving free-standing ICF targets: Physical model and simulation code development. Laser Part. Beams 20, 13.CrossRefGoogle Scholar
Aleksandrova, I.V., Bazdenkov, S.V., Chtcherbakov, V.I., Koresheva, E.R., Koshelev, E.L., Osipov, I.E. & Yaguzinskiy, L.S. (2004). An efficient method of fuel ice formation in moving free-standing ICF/IFE targets. J. Phys. D: Appl. Phys. 37, 1163.CrossRefGoogle Scholar
Aleksandrova, I.V., Koresheva, E.R. & Osipov, I.E. (1993). The changes in the morphology of frozen hydrogen izotope layers under the target heating. J. Moscow Phys. Soc. 3, 85.Google Scholar
Aleksandrova, I.V., Koresheva, E.R. & Osipov, I.E. (1999). Free-standing targets for applications to ICF. Laser Part. Beams 17, 713.CrossRefGoogle Scholar
Gindin, I.A., Starodubov, Ya.D. & Aksyonov, V.K. (1980). Structure and strength properties of metals with anomalous distorted lattice. Metallofizika 2, 49.Google Scholar
Harding, D.R., Elasky, L.M., Verbridge, S., Weaver, A. & Edgell, D.H. (2004). Formation of deuterium-ice layers in OMEGA targets. LLE Rev. Quarterly Rept. 99, 160.Google Scholar
Kawata, S. & Nakashima, H. (1992). Tritium content of a DT pellet in inertial confinement fusion. Laser Part. Beams 10, 479.CrossRefGoogle Scholar
Khalenkov, A.M., Borisenko, N.G., Kondrashov, V.N., Merkuliev, Y.A., Limpouch, J. & Pimenov, V.G. (2006). Experience of micro-heterogeneous target fabrication to study energy transport in plasma near critical density. Laser Part. Beams 24, 283290.CrossRefGoogle Scholar
Koresheva, E.R., Osipov, I.E. & Aleksandrova, I.V. (2005). Free standing target technologies for inertial fusion energy: targets fabrication, characterization and delivery. Laser Part. Beams 23, 563.CrossRefGoogle Scholar
Malkov, M.P., Danilov, I.B., Zeldovich, A.G. & Fradkov, A.B. (1973). Handbook on Cryogenics. Moscow: Energia.Google Scholar
McKenty, P.W., Sangster, T.S., Alexander, M., Betti, R., Craxton, R.S., Delettrez, J.A., Elasky, L., Epstein, R., Frank, A., Glebov, V. Yu., Goncharov, V.N., Harding, D.R., Jin, S., Knauer, J.P., Keck, R.L., Loucks, S.J., Lund, L.D., McCrory, R.L., Marshall, F.J., Meyerhofer, D.D., Regan, S.P., Radha, P.B., Roberts, S., Seka, W., Skupsky, S., Smalyuk, V.A., Souers, J.M., Thorp, K.A., Wozniak, M., Frenje, J.A., Li, C.K., Petrasso, R.D., Seguin, F.H., Fletcher, K.A., Padalino, S., Freeman, C., Izumi, N., Koch, J.A., Lerche, R.A., Moran, M.J., Phillips, T.W., Schmid, G.J. & Sorce, C. (2004). Direct-drive cryogenic target implosion performance on OMEGA. Phys. Plasmas 11, 2790.CrossRefGoogle Scholar
Monsler, M.J., Merkul'ev, Yu.A. & Norimatsu, T. (1995). Target fabrication and injection. In Energy From Inertial Fusion. Vienna: IAEA.Google Scholar
Nakai, S. & Miley, G.N. (1992). Physics of High Power Laser and Matter Interactions. Singapore: Word Scientific Publishing.Google Scholar
Nakamura, T., Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Generation and transport of fast electrons inside cone targets irradiated by intense laser pulses. Laser Part. Beams 24, 58.CrossRefGoogle Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.CrossRefGoogle Scholar
Oparin, A.M. (1995). Numerical modeling of hydrodynamic and kinetic processes at high energy density. PhD Thesis, Moscow: Institute for Design Automation RAS.Google Scholar
Osipov, I.E., Koresheva, E.R., Baranov, G.D., et al. (2002). A device for cryotarget rep-rate delivery in IFE target chamber. In Inertial Fusion Science and Application, State of the Art 2001. New York: Elsevier.Google Scholar
Petzoldt, R.W. (1998). IFE target injection and tracking experiment. Fusion Technol. 34, 831.CrossRefGoogle Scholar
Ramis, R., Ramirez, J. & Schurtz, G. (2008). Implosion symmetry of laser-irradiated cylindrical targets. Laser Part. Beams 26, 113126.CrossRefGoogle Scholar
Sakagami, H., Johzaki, T., Nagatomo, H. & Mima, K. (2006). Fast ignition integrated interconnecting code project for cone-guided targets. Laser Part. Beams 24, 191198.CrossRefGoogle Scholar
Souers, P.C. (1986). Hydrogen properties for fusion energy. Berkley: Lawrence Livermore National Laboratory.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Matvechev, A., Ostrik, A., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2007). Numerical modeling of heavy ion induced stress waves in solid targets. Laser Part. Beams 25, 523540.CrossRefGoogle Scholar
Wanner, R. & Meyer, H. (1972). Sound velocity in solid hydrogen and deuterium. Phys. Lett. A 41, 189.CrossRefGoogle Scholar