Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T21:46:55.389Z Has data issue: false hasContentIssue false

Surface plasma waves induced electron acceleration in a static magnetic field

Published online by Cambridge University Press:  27 June 2016

D. Goel*
Affiliation:
Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India
P. Chauhan
Affiliation:
Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India
A. Varshney
Affiliation:
Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India
V. Sajal
Affiliation:
Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India
*
Address correspondence and reprint requests to: Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India. E-mail: [email protected]

Abstract

The acceleration of an electron beam by surface plasma waves (SPW), in the presence of external magnetic field parallel to surface and perpendicular to direction of propagation of SPW has been studied. This wave propagating along the $\hat z$-axis is excited using Kretschmann geometry, having maximum amplitude at the metal–vacuum interface. Equations of motion have been solved for electron energy and trajectory. The electron gains and retains energy in the form of cyclotron oscillations due to the combined effect of the static magnetic field and SPW field. The energy gained by the beam increases with the strength of magnetic field and laser intensity. In the present scheme, electron beams can achieve ~15 KeV energy for the SPW amplitude A1 = 1.6 × 1011 V/m, plasma frequency ωp = 1.3 × 1016 rad/s and cyclotron frequency ωcp = 0.003.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bigongiari, A., Raynaud, M. & Riconda, C. (2011 a). Steady magnetic-field generation via surface-plasma-wave excitation. Phys. Rev. E 84, 015402(R).Google Scholar
Bigongiari, A., Raynaud, M., Riconda, C., Heron, A. & Macchi, A. (2011 b). Efficient laser-overdense plasma coupling via surface plasma waves and steady magnetic field generation. Phys. Plasma 18, 102701.Google Scholar
Brion, J.J., Wallis, R.F., Hartstein, A. & Burstein, E. (1974). Theory of surface magnetoplasmons in semiconductors. Phys. Rev. Lett. 28, 22.Google Scholar
Deepika, G, Chauhan, P., Varshney, A., Singh, D.B. and Sajal, V. (2015). Enhanced absorption of surface plasma wave by metal nano-particles in the presence of external magnetic field. J. Phys. D: Appl. Phys. 48, 345103.Google Scholar
Dieckmann, M.E., Ljung, P., Ynnerman, A. & Mcclements, K.G. (2002). Three-dimensional visualization of electron acceleration in magnetized plasma. IEEE Trans. Plasma Sci. 30, 20.Google Scholar
Esirkepov, T., Bulanov, S.V., Yamagiwa, M.V. & Tajima, T. (2006). Electron, positron, and photon wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 96, 014803.Google Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.Google Scholar
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. (2006). Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.Google Scholar
Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 38541.Google Scholar
Gupta, D.N., Gopal, K., Nam, I.H., Kulagin, V.V. & Suk, H. (2014). Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32, 449454.Google Scholar
Gupta, D.N. & Ryu, C.M. (2005). Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum. Phys. Plasmas 12, 053103.Google Scholar
Gupta, D.N. & Suk, H. (2007). Energetic electron beam generation by laser-plasma interaction and its application for neutron production. J. Appl. Phys. 101, 114908.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Rosmej, O.N., Spiller, P., Tahir, N.A., Weyrich, K., Dafni, T., Kuster, M., Ni, P., Roth, M., Udrea, S. & Varentsov, D. (2007). Particle accelerator physics and technology for high energy density physics research. Eur. Phys. J: D 44, 293300.Google Scholar
Hur, M.S., Gupta, D.N. & Suk, H. (2008). Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration. Phys. Lett. A 372, 26842687.Google Scholar
Irvine, S.E., Dechant, A. & Elezzabi, A.Y. (2004). Generation of 0.4 keV femtosecond electron pluses using impulsively excited surface plasmons. Phys. Rev. Lett. 93, 184801.Google Scholar
Irvine, S.E. & Elezzabi, A.Y. (2005). Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses. Appl. Phy. Lett. 86, 264102.Google Scholar
Kretschmann, E. & Raether, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 23A, 2135.Google Scholar
Lagutin, A., Rosseel, K., Herlach, F., Vanacken, J. & Bruynseraede, Y. (2003). Development of reliable 70 T pulsed magnets. Measur. Sci. Technol. 14, 2144.Google Scholar
Liu, C.S., Kumar, G., Singh, D.B. & Tripathi, V.K. (2007). Electron acceleration by surface plasma waves in double metal surface structure. J. Appl. Phys. 102, 113301.Google Scholar
Prasad, P., Singh, R. & Tripathi, V.K. (2009). Effect of an axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electrons. Laser Part. Beams 27, 459464.Google Scholar
Raether, H. (1988). Surface Plasmons on Smooth and Rouge Surfaces and on Gratings. New York: Springer-Verlag.Google Scholar
Singh, K.P. (2004). Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum. Phy. Rev. E 69, 056410.Google Scholar
Vieira, J., Martins, S.F., Pathak, V.B., Fonseca, R.A., Mori, W.B. & Silva, L.O. (2011). Magnetic control of particle injection in plasma based accelerators, Phys. Rev. Lett. 106, 225001.Google Scholar
Zawadzka, J., Jaroszynski, D., Carey, J.J. & Wynne, K. (2001). Evanescent-wave acceleration of ultrashort electron pluses. Appl. Phys. Lett. 79, 21302132.Google Scholar
Zherlitsyn, S., Herrmannsdorfer, T., Wustmann, B. & Wosnitza, J. (2010). Design and performance of non-destructive pulsed magnets at the dresden high magnetic field laboratory. IEEE Trans. Appl. Superconductivity 20, 672675.Google Scholar