Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T11:04:38.073Z Has data issue: false hasContentIssue false

Surface morphology modifications of human teeth induced by a picosecond Nd:YAG laser operating at 532 nm

Published online by Cambridge University Press:  15 January 2009

B.M. Mirdan*
Affiliation:
Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
H.A. Jawad
Affiliation:
Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
D. Batani
Affiliation:
Dipartimento di Fisica “G.Occhialini,”Università di Milano Bicocca, Milano, Italy
V. Conte
Affiliation:
Dipartimento di Morfologia Umana, Università di Milano, Milano, Italy
T. Desai
Affiliation:
Dipartimento di Fisica “G.Occhialini,”Università di Milano Bicocca, Milano, Italy
R. Jafer
Affiliation:
Dipartimento di Fisica “G.Occhialini,”Università di Milano Bicocca, Milano, Italy
*
Address correspondence and reprint requests to: B.M. Mirdan, Institute of Laser for Postgraduate Studies, University of Baghdad, Baghdad, Iraq. E-mail: [email protected]

Abstract

The interaction of an Nd:YAG laser, operating at 532 nm with 40 ps pulse duration, with human teeth was studied. The results show that teeth were significantly modified at an energy fluence of about 11 J/cm2. Various surface morphologies of enamel and dentine were recorded. Features on enamel include crater (conical form) in the central part and cauliflower morphology at the periphery, whereas on dentine the crater looks like a stretched dome between sharp edges. The behavior of the enamel-dentine junction area showed different morphology with respect to both tooth enamel and dentine alone. Finally, the junction channel showed a removal of collagen fibers and the formation of a needle-like bottom structure. Generally, this investigation showed that the picosecond Nd:YAG laser can ablate a tooth surface practically instantaneously, implying that large tooth surfaces can be processed in short time.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alti, K. & Khare, A. (2006). Low-energy low-divergence pulsed indium atomic beam by laser ablation. Laser Part. Beam 24, 4753.CrossRefGoogle Scholar
Bashir, S., Rafique, M.S. & Ul-Haq, F. (2007). Laser ablation of ion irradiated CR-39. Laser Part Beams 25, 181191.CrossRefGoogle Scholar
Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conducted at the PALS laboratory. Laser Part Beams 25, 127141.CrossRefGoogle Scholar
Batani, D., Stabile, H., Ravsio, A., Lucchini, G., Desai, T., Ullschmied, J., Krousky, E., Juha, L., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H. & Ochi, Y. (2003). Ablation pressure scaling at short laser wavelength. Phys. Rev. E 68, 067403.CrossRefGoogle ScholarPubMed
Beilis, I. (2007). Laser plasma generation and plasma interaction with ablative target. Laser Part. Beams 25, 5363.CrossRefGoogle Scholar
Bhaskar, S.N. (1991). Orbans Oral Histology and Embryology. St. Louis: C.V. Mosby.Google Scholar
Bussoli, M., Batani, D., Desai, T., Milani, M., Milan, T., Gakovic, B. & Krousky, E. (2007). Study of laser induced ablation with FIB devices. Laser Part. Beams 25, 121125.CrossRefGoogle Scholar
Carlson, S.J. & Krause, D.W. (1985). Enamel Ultrastructure of Multituberculate Mammals: An Investigation of Variability Contributions from the Museum of Paleeok. East Lansing: University of Michigan.Google Scholar
Desai, T., Batni, D., Rossetti, S. & Lucchini, G. (2005). Laser induced ablation and crater formation at high laser flux. Rad. Effects Defects Solids 160, 595600.CrossRefGoogle Scholar
Desai, T., Dezulian, R. & Batani, D. (2007). Radiation effects on shock propagation in Al target relevant to equation of state measurements. Laser Part. Beams 25, 2330.CrossRefGoogle Scholar
Desai, T., Batani, D., Bussoli, M., Villa, A.M., Dezulian, R. & Krousky, E. (2008) . Laboratory craters: Modeling experiments for meteorite impact craters? IEEE Trans. Plasma Sci. 36, 11321133.CrossRefGoogle Scholar
Di Bernardo, A., Batani, D., Desai, T., Courtois, C., Cros, B. & Matthieussent, G. (2003). High intensity ultra short laser induced ablation of metal targets in the presence of ambient gas. Laser Part. Beams 21, 5964.CrossRefGoogle Scholar
Faeov, A., Pikuz, T., Magunov, A., Batani, D., Lucchini, G., Canova, F. & Piselli, M. (2004). Bright point X-ray source based on a commercial portable 40 ps Nd:YAG laser system. Laser Part. Beams 22, 373379.Google Scholar
Fernández, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Towards an experimental program on energetic interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Frankline, S.R., Chauhan, P., Mitra, A. & Thareja, R.K. (2005). Laser ablation of human tooth. J. Appl. opt. 97, 094919.Google Scholar
Gakovic, B., Trtica, M., Batani, D., Desai, T., Panjan, P. & Vasiljevic-Radoyic, D. (2007). Surface modification of titanium nitride film by a picosecond Nd:YAG laser. J. Opt. A 9, 7980.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Makropoulou, M.I., Serafetinides, A.A. & Khabbaz, M.G. (1996). Dentin ablation measurements in endodontics with HF and CO2 laser radiation. SPIE 2623, 200210.Google Scholar
Neev, J., Stabholz, A., Liaw, L., Torabinejad, M., Fujishige, J.T., Ho, P.H., Berns, M.W. (1993). Scanning electron microscopy and thermal characteristics of dentin ablated by a short pulse XeCl laser. Laser Surg. Med. 13, 353361.CrossRefGoogle Scholar
Neev, J., Raney, D.V., Fujishige, J.T., Ho, P.T. & Berns, M.W. (1991). Selectivity and efficiency in the ablation of hard dental tissue with ArF pulsed excimer lasers. Laser Surg. Med. 11, 499510.CrossRefGoogle ScholarPubMed
Neev, J., Da Silva, L.B., Feet, M.D., Perry, M.D., Rubenchik, A.M., Stuart, B.C. (1996). Ultrashort pulse lasers for hard tissue ablation. IEEE J. Quan. Electron. 2, 790800.CrossRefGoogle Scholar
Rode, A.V., Gamaly, E.G., Luther-Davies, B., Taylor, B.T., Graessel, M., Dawes, J.M., Chan, A., Lowe, R.M. & Hannaford, P. (2003). Precision ablation of dental enamel using a subpicosecond pulsed laser. Australian Dental J. 32, 233239.CrossRefGoogle Scholar
Schade, W., Bohling, C., Hohmann, K. & Scheel, D. (2006). Laser-induced plasma spectroscopy for mine detection and verification. Laser Part. Beams 24, 241247.CrossRefGoogle Scholar
Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.Google Scholar
Serafetindes, A.A., Khabbaz, M.G., Makropouloub, M.I. & Kar, A.K. (1999). Picosecond laser ablation of dentine in endodontics. Laser Med. Sci. 14, 168174.CrossRefGoogle Scholar
Stawn, S.E., White, J.M., Marshll, G.W., Gee, L., Goodis, H.E. & Marshall, S.J. (1996). Spectroscopic changes in human dentine exposed to various storage solutions—short term. J Dent. 24, 417423.CrossRefGoogle Scholar
Takuma, S., Tohda, H.,Watanabe, K., Ogiwara, H. & Yanagisawa, T. (1982). Scanning electrum microscopy on ion etching of enamel and dentin. J. Electron Microscope 31, 144150.Google Scholar
Thareja, R.K. & Sharma, A.K. (2006). Reactive pulsed laser ablation: Plasma studies. Laser Part. Beams 24, 311320.CrossRefGoogle Scholar
Trtica, M., Gakovic, B., Batani, D., Desai, T., Panjan, P. & Radak, B. (2006 a). Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm. Appl. Surf. Sci. 253, 25512556.CrossRefGoogle Scholar
Trtica, M., Gakovic, B., Maravic, D., Batani, D., Desai, T. & Redaelli, R. (2006 b). Surface modification of titanium by high intensity ultra-short Nd:YAG Laser. Mater. Sci. Forum 518, 167172.CrossRefGoogle Scholar
Trtica, M., Gakovic, B., Maravic, D., Batani, D., Desai, T. & Redaelli, R. (2007 a). Surface modifications of crystalline silicon created by high intensity 1064 nm picosecond Nd:YAG laser pulses. Appl. Surf. Sci. 253, 93159318.CrossRefGoogle Scholar
Trtica, M., Gakovic, B., Radak, B., Batani, D., Desai, T. & Bussoli, M. (2007 b). Periodic surface structures on crystalline silicon created by 532 nm picosecond Nd:YAG laser pulses. Appl. Surf. Sci. 254, 5137751381.CrossRefGoogle Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O-2/Ar atmosphere. Laser Part. Beams 23, 149153.CrossRefGoogle Scholar
Veiko, V.P., Shakhno, Ea., Smirnov, V.N., Miaskoski, Am. & Nikishin, G.D. (2006). Laser-induced film deposition by LIFT: Physical mechanisms and applications. Laser Part. Beams 24, 203209.CrossRefGoogle Scholar
Wieger, V., Strassl, M. & Wintner, E. (2006). Pico- and microsecond laser ablation of dental restorative materials. Laser Part. Beams 24, 4145.CrossRefGoogle Scholar
Zip, J.R. & Ten Bosch, J.J. (1993). Theoretical model for the scattering of light by dentin and comparison with measurements. Appl. opt. 32, 411415.Google Scholar