Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T18:48:23.410Z Has data issue: false hasContentIssue false

Study on size of laser entrance hole shield for ignition octahedral spherical hohlraums

Published online by Cambridge University Press:  20 October 2015

Shu Li
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Ke Lan*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Jie Liu
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China Center for Applied Physics and Technology, Peking University, Beijing 100871, China
*
Address correspondence and reprint requests to: Ke Lan, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. E-mail: [email protected]

Abstract

In this paper, the influences of laser entrance hole shields on capsule symmetry and coupling efficiency of an ignition octahedral spherical hohlraum are studied using analytical model and three-dimensional Monte-Carlo simulations. As a result, there are two critical shield radii at which the capsule asymmetry tends to minimum, and the coupling efficiency from hohlraum to capsule reaches its maximum when the shield size is taken around the second critical radius. For the ignition octahedral hohlraums used in our study, the first critical radius is 0.625 mm with a capsule asymmetry of 0.24%, and the second is 0.86 mm with 0.26%, and the asymmetry is smaller than 0.58% for shields’ radius in the range of 0.44 and 0.88 mm, which therefore leaves much flexibility in the shield radius design even the shields have an expansion under radiation ablation. The initial shield radius can be taken around the first critical radius in the ignition target design, not only to have a minimum initial capsule radiation asymmetry, but also to get a minimum asymmetry and highest coupling efficiency during the main pulse of drive. Finally, the relative flux of laser spot, wall and shields is 2.2:1:0.6 for our ignition octahedral spherical hohlraum model from the Monte-Carlo simulations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Cerjan, C., Hinkel, D.E., Milovich, J.L., Park, H.-S. & Robey, H.F. (2008). Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement. Phys. Plasmas 15, 012702.CrossRefGoogle Scholar
Amendt, P., Murphy, T.J. & Hatchett, S.P. (1996). Novel symmetry tuning in NOVA hohlraums using axial disks. Phys. Plasmas 3, 4166.CrossRefGoogle Scholar
Atzeni, S. & Meyer-Ter-vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Oxford Science Press.CrossRefGoogle Scholar
Belkov, S.A., Abzaev, F.M., Bessarab, A.V., Bondarenko, S.V., Veselov, A.V., Gaidach, V.A., Dolgoleva, G.V., Zhidkov, N.V., Izgorodin, V.M., Kirillov, G.A., Kochemasov, G.G., Litvin, D.N., Mitrofanov, E.I., Murugov, V.M., Mkhitarian, L.S., Petrov, S.I., Pinegin, A.V., Punin, V.T., Senik, A.V. & Suslov, N.A. (1999). Compression and heating of indirectly driven spherical fusion targets on the ISKRA-5 facility. Laser Particle Beams 17, 591.CrossRefGoogle Scholar
Callahan, D.A., Amendt, P., Dewald, E.L., Haan, S.W., Hinkel, D.E., Izurni, N., Jones, O.S., Landen, O.L., Lindl, J.D., Pollaine, S.M., Suter, L.J., Tabak, M. & Turner, R.E. (2006). Using laser entrance hole shields to increase coupling efficiency in indirect drive ignition targets for the National Ignition Facility. Phys. Plasmas 13, 056307.CrossRefGoogle Scholar
Clark, D.S., Marinak, M.M., Weber, C.R., Eder, D.C., Haan, S.W., Hammel, B.A., Hinkel, D.E., Jones, O.S., Milovich, J.L., Patel, P.K., Robey, H.F., Salmonson, J.D., Sepke, S.M. & Thomas, C.A. (2015). Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign. Phys. Plasmas 22, 022703.CrossRefGoogle Scholar
Haan, S.W., Lindl, J.D., Callahan, D.A., Clark, D.S., Salmonson, J.D., Hammel, B.A., Atherton, L.J., Cook, R.C., Edwards, M.J., Glenzer, S., Hamza, A.V., Hatchett, S.P., Herrmann, M.C., Hinkel, D.E., Ho, D.D., Huang, H., Jones, O.S., Kline, J., Kyrala, G., Landen, O.L., Macgowan, B.J., Marinak, M.M., Meyerhofer, D.D., Milovich, J.L., Moreno, K.A., Moses, E.I., Munro, D.H., Nikroo, A., Olson, R.E., Peterson, K., Pollaine, S.M., Ralph, J.E., Robey, H.F., Spears, B.K., Springer, P.T., Thomas, C.A., Town, R.P., Vesey, R., Weber, S.V., Wilkens, H.L. & Wilson, D.C. (2011). Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18, 051001.CrossRefGoogle Scholar
Huo, W., Lan, K., Li, Y., Yang, D., Li, S., Li, X., Wu, C., Ren, G., Zhao, Y., Zou, S., Zheng, W., Gu, P., Wang, M., Yi, R., Jiang, X., Song, T., Li, Z., Guo, L., Liu, Y., Zhan, X., Wang, F., Peng, X., Zhang, H., Yang, J., Liu, S., Jiang, S. & Ding, Y. (2012). Determining the hohlraum M-band fraction by using shock wave technique on SGIII-prototype laser facility. Phys. Rev. Lett. 109, 145004.CrossRefGoogle ScholarPubMed
Huo, W., Liu, J., Zhao, Y., Zheng, W. & Lan, K. (2014). Insensitivity of the octahedral spherical hohlraum to power imbalance, pointing accuracy, and assemblage accuracy. Phys. Plasmas 21, 114503.CrossRefGoogle Scholar
Kline, J.L., Callahan, D.A., Glenzer, S.H., Meezan, N.B., Moody, J.D., Hinkel, D.E., Jones, O.S., Mackinnon, A.J., Bennedetti, R., Berger, R.L., Bradley, D., Dewald, E.L., Bass, I., Bennett, C., Bowers, M., Brunton, G., Bude, J., Burkhart, S., Condor, A., Nicola, J. M. DI, Nicola, P.DI, Dixit, S.N., Doeppner, T., Dzenitis, E.G., Erber, G., Folta, J., Grim, G., Lenn, S., Hamza, A., Hann, S.W., Heebner, J., Henesian, M., Hermann, M., Hicks, D.G., Hsing, W.W., Izumi, N., Jancaitis, K., Jones, O.S., Kalantar, D., Khan, S.F., Kirkwook, R., Kyrala, G.A., Lafortune, K., Landen, O.L., Lain, L., Larson, D., Le Pape, S., Ma, T., Macphee, A.G., Michel, P.A., Miller, P., Montincelli, M., Moore, A.S., Nikroo, A., Nostrand, M., Olson, R.E., Pak, A., Park, H.S., Schneider, M.B., Shaw, M., Smalyuk, V.A., Strozzi, D.J., Suratwala, T., Suter, L.J., Tommasini, R., Town, R. P. J., Van Wonterghem, B., Wegner, P., Widmann, K., Widmayer, C., Wilkens, H., Williams, E.A., Edwards, M.J., Remington, B.A., Macgowan, B.J., Kikenny, J.D., Lindl, J.D., Atherton, L.J., Batha, S.H. & Moses, E. (2013). Hohlraum energetics scaling to 520 TW on the National Ignition Facility. Phys. Plasmas 20, 056314.CrossRefGoogle Scholar
Lan, K., Lai, D., Zhao, Y. & Li, X. (2012). Initial study and design on ignition ellipraum. Laser Part. Beams 30, 175.CrossRefGoogle Scholar
Lan, K., Liu, J., Lai, D., Zheng, W. & He, X. (2014 a). High flux symmetry of the spherical hohlraum with octahedral 6LEHs at the hohlraumto-capsule radius ratio of 5.14. Phys. Plasmas 21, 010704.CrossRefGoogle Scholar
Lan, K., He, X., Liu, J., Zheng, W. & Lai, D. (2014 b). Octahedral spherical hohlraum and its laser arrangement for inertial fusion. Phys. Plasmas 21, 052704.CrossRefGoogle Scholar
Lan, K. & Zheng, W. (2014). Novel spherical hohlraum with cylindrical laser entrance holes and shields. Phys. Plasmas 21, 090704.CrossRefGoogle Scholar
Li, X., Lan, K., Meng, X., He, X., Lai, D. & Feng, T. (2010). Study on Au+U+Au sandwich hohlraum wall for ignition targets. Laser Part. Beams 28, 75.CrossRefGoogle Scholar
Li, S., Li, G., Tian, D.F. & Deng, L. (2013). An implicit Monte Carlo method for thermal radiation transport. Acta Phys. Sin. 62, 249501.Google Scholar
Lindl, J., Landen, O., Edwards, J., Moses, E. & NIC TEAM (2014). Review of the national ignition campaign 2009–2012. Phys. Plasmas 21, 020501.CrossRefGoogle Scholar
Lindl, J.D. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.CrossRefGoogle Scholar
Pei, L.C. & Zhang, X.Z. (1980). Monte Carlo Methods and Application in Particle Transportation. Beijing: Science Press.Google Scholar
Wallace, J.M., Murphy, T.J., Delamater, N.D., Klare, K.A., Oertel, J.A., Magelssen, G.R., Lindman, E.L., Hauer, A.A. & Gobby, P. (1999). Inertial confinement fusion with tetrahedral hohlraums at OMEGA. Phys. Rev. Lett. 82, 3807.CrossRefGoogle Scholar