Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T02:39:12.508Z Has data issue: false hasContentIssue false

Study on Au + U + Au sandwich Hohlraum wall for ignition targets

Published online by Cambridge University Press:  21 January 2010

Xin Li
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Ke Lan*
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Xujun Meng
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Xiantu He
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Dongxian Lai
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
Tinggui Feng
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing, People's Republic of China
*
Address correspondence and reprint requests to: Ke Lan, Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-14 Beijing, 100088, People's Republic of China. E-mail: [email protected]

Abstract

In ignition targets designs, U or U based cocktail hohlraum are usually used because the Rosseland mean opacity of U is higher than for Au at the radiation temperature for ignition. However, it should be noted that the opacity of U is obviously lower than for Au when the radiation temperature falls into a low temperature region. Because the depth penetrated by radiation is only several micrometers under a 300eV drive, and also because there is a prepulse longer than 10 ns prepulse at temperatures lower than 170 eV in the radiation drive of ignition target designs. Therefore we propose an Au + U + Au sandwich hohlraum for ignition targets in this work. Compared to the cocktail, the sandwich not only remarkably simplifies the fabrication and uses less depleted U material, but also increases the albedo during the prepulse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrova, I.V., Belolipeskiy, A.A., Koresheva, E.R. & Tolokonnikov, S.M. (2008). Survivability of fuel lasers with a different structure under conditions of the environmental effects: Physical concepts and modeling results. Laser Part. Beams 26, 643648.CrossRefGoogle Scholar
Atherton, L.J. & Jeffrey, L. (2008). Targers for the National Ignition Campaign. J. Phys. 112, 032063.Google Scholar
Bar-Shalom, A., Oreg, J., Goldstein, W.H., Shvarts, D. & Zigler, A. (1989). Super-transition-arrays: A model for the spectral analysis of hot, dense plasma. Phys. Rev. A, 40, 31833193.CrossRefGoogle Scholar
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, no. 4, pp. 537–43.CrossRefGoogle Scholar
Bret, A. & Deutsch, C. (2006). Density gradient effects on beam plasma linear instabilities for fast ignition scenario. Laser Part. Beams 24, 269273.CrossRefGoogle Scholar
Callahan, D.A., Hinkel, D.E., Berger, R.L., Divol, L., Dixit, S.N., Edwards, M.J., Haan, S.W., Jones, O.S., Lindl, J.D., Meezan, N.B., Michel, P.A., Pollaine, S.M., Suter, L.J., Town, R.P.J. (2008). Optimization of the NIF ignition point design hohlraum. J. Phys. 112, 022021.Google Scholar
Chatain, D., Perin, J.P., Bonnay, P., Bouleau, E., Chichoux, M., Communal, D., Manzagol, J., Viargues, F., Brisset, D., Lamaison, V. & Paquignon, G. (2008). Cryogenic systems for inertial fusion energy. Laser Part. Beams 26, 517523.CrossRefGoogle Scholar
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, J.D., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.CrossRefGoogle Scholar
Deutsch, C., Bret, A., Firpo, M.C., Gremillet, L., Lefebvre, E. & Lifschitz, A. (2008). Onset of coherent electromagnetic structures in the relativistic electron beam deuterium-tritium fuel interaction of fast ignition concern. Laser Part. Beams 26, 157165.CrossRefGoogle Scholar
Dewald, E.L., Rosen, M., Glenzer, S.H., Suter, L.J., Girard, F., Jadaud, J.P., Schein, J., Constantin, C., Wagon, F., Huser, G., Neumayer, P. & Landen, O.L. (2008). X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition. Phys. Plasmas 15, doi:10.1063/1.2943700.Google Scholar
Eliezer, S., Murakami, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, no. 4, pp. 585592.CrossRefGoogle Scholar
Feng, T.G., Lai, D.X. & Xu, Y. (1999). An artificial-scattering iteration method for calculating multi-group radiation transfer problem. Chinese J. Comput. Phys. 16, 199205.Google Scholar
Foldes, I.B. & Szatmari, S. (2008). On the use of KrF lasers for fast ignition. Laser Part. Beams 26, 575582.CrossRefGoogle Scholar
Franklin, J.D.S., Emilio, M., Steven, J.D. & Carlos, A.I. (2000). WorkOp-IV summary: lessons from iron opacities. J. Quant. Spectro. & Rad. Trans. 65, 527541.Google Scholar
Glenzer, S.H., Froula, D.H., Divol, L., Dorr, M., Berger, R.L., Dixit, S., Hammel, B.A., Haynam, C., Hittinger, J.A., Holder, J.P., Jones, O.S., Kalantar, D.H., Landen, O.L., Langdon, A.B., Langer, S., MacGowan, B.J., Mackinnon, A.J., Meezan, N., Moses, E.I., Niemann, C., Still, C.H., Suter, L.J., Wallace, R.J., Williams, E.A. & Young, B.K.F. (2007). Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nat. Phys. 3, 716719.Google Scholar
Hammer, J.H. & Rosen, M.D. (2003). A consistent approach to solving the radiation diffusion equation. Phys. Plasmas 10, 18291845.CrossRefGoogle Scholar
Hoffmann, D.H.H. (2008). Intense laser and particle beams interaction physics toward inertial fusion. Laser Part. Beams 26, 295296.Google Scholar
Holmlid, L., Hora, H., Miley, G. & Yang, X. (2009). Ultrahigh-density deuterium of Rydberg matter clusters for inertial confinement fusion targets. Laser Part. Beams 27, 529532.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Imasaki, K. & Li, D. (2007). An approach to hydrogen production by inertial fusion energy. Laser Part. Beams 25, 99105.CrossRefGoogle Scholar
Jones, O.S., Schein, J., Rosen, M.D., Suter, L.J., Wallace, R.J., Dewald, E.L., Glenzer, S.H., Campbell, K.M., Gunther, J., Hammel, B.A., Landen, O.L., Sorce, C.M., Olson, R.E., Rochau, G.A., Wilkens, H.L., Kaae, J.L., Kilkenny, J.D., Nikroo, A. & Regan, S.P. (2007). Proof of principle experiments that demonstrate utility of cocktail hohlraums for indirect drive ignition. Phys. Plasmas 14, 056311.Google Scholar
Koresheva, E.R., Aleksandrova, I.V., Koshelev, E.L., Nikitenko, A.I., Timasheva, T.P., Tolokonnikov, S.M., Belolipetskiy, A.A., Kapralov, V.G., Sergeev, V.T., Blazevic, A., Weyrich, K., Varentsov, D., Tahir, N.A., Udrea, S. & Hoffmann, D.H.H. (2009). A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR. Laser Part. Beams 27, 255272.CrossRefGoogle Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.CrossRefGoogle Scholar
Marshak, R.E. (1958). Effect of radiation on shock wave behavior. Phys. Fluids 1, 2429.Google Scholar
Nobile, A., Nikroo, A., Cook, R.C., Cooley, J.C., Alexander, D.J., Hackenberg, R.E., Necker, C.T., Dickerson, R.M., Kilkenny, J.L., Bernat, T.P., Chen, K.C., Xu, H., Stephens, R.B., Huang, H., Haan, S.W., Forsman, A.C., Atherton, L.J., Letts, S.A., Bono, M.J. & Wilson, D.C. (2006). Status of the development of ignition capsules in the US effort to achieve thermonuclear ignition on the national ignition facility. Laser Part. Beams 24, 567578.Google Scholar
Orzechowski, T.J., Rosen, M.D., Kornblum, H.N., Porter, J.L., Suter, L.J., Thiessen, A.R. & Wallace, R.J. (1996). The Rosseland mean opacity of a mixture of gold and gadolinium at high temperatures. Phys. Rev. Lett. 77, 35453548.Google Scholar
Ramis, R., Ramirez, J. & Schurtz, G. (2008). Implosion symmetry of laser-irradiated cylindrical targets. Laser Part. Beams 26, 113126.CrossRefGoogle Scholar
Rodriguez, R., Florido, R., Gll, J.M., Rubiano, J.G., Martel, P. & Minguez, E. (2008). RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature. Laser Part. Beams 26, 433448.Google Scholar
Seifter, A., Kyrala, G.A., Goldman, S.R., Hoffman, N.M., Kline, J.L. & Batha, S.H. (2009). Demonstration of symcaps to measure implosion symmetry in the foot of the NIF scale 0.7 hohlraums. Laser Part. Beams 27, 123127.CrossRefGoogle Scholar
Strangio, C., Caruso, A. & Aglione, M. (2009). Studies on possible alternative schemes based on two-laser driver for inertial fusion energy applications. Laser Part. Beams 27, 303309.CrossRefGoogle Scholar
Suter, L., Rothenberg, J., Munro, D., Van Wonterghem, B. & Haan, S. (2000). Exploring the limits of the National Ignition Facility's capsule coupling. Phys. Plasmas 7, 20922098.Google Scholar
Wilkens, H.L., Nikroo, A., Wall, D.R. & Wall, J.R. (2007). Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility. Phys. Plasmas 14, 056310.CrossRefGoogle Scholar
Winterberg, F. (2008). Lasers for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127135.CrossRefGoogle Scholar
Yang, H., Nagai, K., Nakai, N. & Norimatsu, T. (2008). Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution. Laser Part. Beams 26, 449453.Google Scholar