Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T23:10:45.336Z Has data issue: false hasContentIssue false

Study of low impedance intense electron-beam accelerator based on magnetic core Tesla transformer

Published online by Cambridge University Press:  07 June 2012

J-L. Liu
Affiliation:
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China
H-B. Zhang*
Affiliation:
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China
Y-W. Fan
Affiliation:
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China
Z-Q. Hong
Affiliation:
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China
J-H. Feng
Affiliation:
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan, Peoples Republic of China
*
Address correspondence and reprint requests to: Hong-Bo Zhang, College of Photoelectical Engineering and Science, National University of Defense Technology, Changsha 410073, Peoples Republic of China. E-mail: [email protected]

Abstract

An intense electron-beam accelerator, which consists of a primary storage capacitor system, a magnetic core Tesla transformer, Blumlein pulse forming line of water dielectric, and a field-emission diode, are constructed and described. The experimental results show that the output voltage of transformer is more than 740 kV, the rise time is about 5 µs, the diode voltage is about 596 kV, electron beam current is about 60 kA, the duration is about 100 ns, and the power is 36 GW when charging voltage is 40 kV. It was suitable to drive magnetically insulated transmission line oscillator. And it can be also used in materials surface modification. This accelerator is very compact and works stably and reliably.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bykov, N.M. (1992). High current high repetition rate electron accelerator based on Tesla transformer. Proc of 9th Int. Conf. on High-Power Particle Beams. Washington, DC.Google Scholar
Cheng, X.B., Liu, J.L., Qian, B.L. & Zhang, J.D. (2009 a). Effect of transition section between the main switch and middle cylinder of Blumlein pulse forming line on the diode voltage of intense electron-beam accelerators. Laser Part. Beams 27, 439447.CrossRefGoogle Scholar
Cheng, X.B., Liu, J.L., Qian, B.L., Bai, G.Q., Chen, Zh. & Feng, J.H. (2010). Research of a high current repetitive triggered spark gap switch and its application. IEEE Trans. Plasma Sci. 38, 516552CrossRefGoogle Scholar
Cheng, X.B., Liu, J.L., Qian, B.L., Zhang, Y. & Zhang, H.B. (2009 b). Effect of the change in the load resistance on the high voltage pulse transformer of the intense electron-beam accelerators. Rev. Sci. Instr. 80, 112110.CrossRefGoogle ScholarPubMed
Fan, Y.W., Yuan, Ch.W., Zhong, H.H., Shu, T. & Luo, L. (2007 a). Simulation investigation of an improved MILO. IEEE Trans. Plasma Sci. 35, 379383.CrossRefGoogle Scholar
Fan, Y.W., Yuan, Ch.W., Zhong, H.H., Shu, T., Zhang, J.D., Yang, J.H., Yang, H.W., Wang, Y. & Luo, L. (2007 b). Experimental Investigation of an Improved MILO. IEEE Trans. Plasma Sci. 35, 10751080.CrossRefGoogle Scholar
Fan, Y.W., Zhong, H.H., Li, Zh.Q., Shu, T., Zhang, J.D., Liu, J.L., Yang, J.H., Zhang, J., Yuan, Ch.W. & Luo, L. (2008). Recent progress of the improved magnetically insulated transmission line oscillator. Rev. Sci. Inst. 79, 034703.CrossRefGoogle ScholarPubMed
Mesyats, Gennady A., Korovin, Sergei D., Gunin, Alexander V., Gubanov, Vladimir P., Stepchenko, Aleksei S., Grishin, Dmitry M., Landl, Vladimir F. & Alekseenko, Pavel I. (2003). Repetitively pulsed high-current accelerators transformer charging of forming lines. Laser Part. Beams 21, 197209.CrossRefGoogle Scholar
Katsuki, S., Takano, D., Namihira, T. & Akiyama, H. (2001). Repetitive operation of water-filled Blumlein generator. Rev. Sci. Instr. 72, 27592763.CrossRefGoogle Scholar
Ko, S.T. & Nam, S.H. (2004). Numerical field analysis for an air cored spiral strip type pulse transformer. 2004 Power Modulator Conference, San Francisco, CA, USA.Google Scholar
Ko, S.T. & Nam, S.H. (2005). Field enhancement optimization of an air-cored spiral strip pulse transformer. IEEE Trans. Plasma Sci. 33, 12681272.CrossRefGoogle Scholar
Korovin, S.D., Gubanov, V.P., Gunin, A.V., Pegel, I.V. & Stepchenko, A.S. (2001). Repetitive nanosecond high-voltage generator based on spiral forming line. The 28th IEEE International Conference on Plasma Science. 12491251.CrossRefGoogle Scholar
Lim, S.W. & Cho, C.H. (2010). Fabrication and operation testing of a dual resonance pulse transformer for PEL pulse charging. 18th International Conference on High-Power Particle Beams, Jeju, Korea,Google Scholar
Liu, J.L., Cheng, X.B., Qian, B.L., Ge, B., Zhang, J.D. & Wang, X.X. (2009). Study on strip spiral Blumlein line for the pulsed forming line of intense electron-beam accelerators. Laser Part. Beams 27, 95102.CrossRefGoogle Scholar
Liu, J.L., Yin, Y., Ge, B., Zhan, T.W., Cheng, X.B., Feng, J.H., Shu, T., Zhang, J.D. & Wang, X.X. (2007 a). An electron-beam accelerator based on spiral water PFL. Laser Part. Beams 25, 593599.CrossRefGoogle Scholar
Liu, J.L., Zhan, T.W. & Zhang, J. (2007 b). A Tesla pulse transformer for spiral water pulse forming line charging. Laser Part. Beams 25, 305312.CrossRefGoogle Scholar
Liu, J.L., Zhan, T.W., Zeng, N.G., Feng, J.H., Yin, Y., Zhang, J.D. & Wang, X.X. (2007 c). Large power matching load for high-current electronic accelerator. Hi Power Laser Part. Beams 19, 825829.Google Scholar
Miller, P.A., Poukey, J.W. & Wright, T.P. (1975). Electron beam generation in plasma-filled diodes. Phys. Rev. Lett. 35, 940943.CrossRefGoogle Scholar
Peng, J.Ch., Liu, G.Zh., Song, X.X. & Su., J.C. (2010). A high repetitive rate intense electron beam accelerator based on high coupling Tesla transformer. Laser Part. Beams 29, 5560.CrossRefGoogle Scholar
Su, J.C., Zhang, X.B., Liu, G.Zh., Song, X.X., Pan, Y.F., Wang, L.M., Peng, J.Ch. & Ding, Zh.J. (2009). A long-pulse generator based on tesla transformer and pulse-forming network. IEEE Trans. Plasma Sci. 37, 19541958.Google Scholar
Tarasenko, V.F., Shunailov, S.A., Shpak, V.G. & Kostyrya, I.D. (2005). Super short electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.CrossRefGoogle Scholar
Weber, B.V., Allen, R.J., Commisso, R.J., Cooperstein, G., Hinshelwood, D.D., Mosher, D., Murphy, D.P., Ottinger, P.F., Phipps, D.G., Schumer, J.W., Stephanakis, S.J., Swanekamp, S.B., Threadgold, J.R., Biddle, L.A., Clough, S.G., Jones, A., Sinclair, M.A., Swatton, D., Carden, T. & Oliver, B.V. (2008). Radiographic properties of plasma-filled rod-pinch diodes. IEEE Trans. Plasma Sci. 36, 443456.CrossRefGoogle Scholar
Weber, B.V., Boller, J.R., Cooperstein, G., Kellogg, J.C., Stephanakis, S.J. & Swanekamp, S.B. (1993). Plasma filled diode experiments on Gamble II. Proc. 9th IEEE Int. Pulsed Power Conference, pp. 802804. Albuquerque, New Mexico.CrossRefGoogle Scholar
Weber, B.V., Hinshelwood, D.D., Murphy, D.P., Stephanakis, S.J. & Harper-Slaboszewicz, V. (2004). Plasma-filled diode for high dose-rate bremsstrahlung. IEEE Trans. Plasma Sci. 32, 19982003.CrossRefGoogle Scholar
Zhang, Y., Liu, J.L., Cheng, X.B., Zhang, H.B., Qian, B.L., Bai, G.Q., Feng, J.H. & Liang, B. (2010). A compact high voltage pulse generator based on pulse transformer with closed magnetic core. Rev. Sci. Instr. 81, 033302.CrossRefGoogle ScholarPubMed