Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T03:25:08.621Z Has data issue: false hasContentIssue false

Study of coexisting stimulated Raman and Brillouin scattering at relativistic laser power

Published online by Cambridge University Press:  27 October 2014

Ashish Vyas*
Affiliation:
Centre for Energy Studies, IIT Delhi, India
Ram Kishor Singh
Affiliation:
Centre for Energy Studies, IIT Delhi, India
R.P. Sharma
Affiliation:
Centre for Energy Studies, IIT Delhi, India
*
Address correspondence and reprint requests to: Ashish Vyas, Centre for Energy Studies, IIT Delhi, India110016. E-mail: [email protected]

Abstract

This paper presents a model to study the stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) simultaneously at relativistic laser power. At high intensity, the relativistic mass correction for the plasma electrons becomes significant and the plasma refractive index gets modified which leads to the relativistic self-focusing of the pump beam. This filamentation process affects the scattering processes (SRS and SBS) and at the same time the pump filamentation process also gets modified in the presence of the coexisting SRS and SBS due to the pump depletion. We have also demonstrated that the pump depletion and relativistic filamentation affects the back-reflectivity of scattered beams (SRS and SBS) significantly, for the coexistence case.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Soviet Phys. Uspekhi 10, 609.CrossRefGoogle Scholar
Barr, H.C., Berwick, S.J. & Mason, P. (1998). Six-wave forward scattering of short-pulse laser light at relativistic intensities. Phys. Rev. Lett. 81, 2910.Google Scholar
Borghesi, M., Mackinnon, A.J., Barringer, L., Gaillard, R., Gizzi, L.A., Meyer, C., Willi, O., Pukhov, A. & Meyer-Ter-Vehn, J. (1997). Relativistic channeling of a picosecond laser pulse in a near-critical preformed. Plasma Phys. Rev. Lett. 78, 879.Google Scholar
Brandi, H.S., Manus, C., Mainfray, G. & Lehner, T. (1993). Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47, 3780.CrossRefGoogle ScholarPubMed
Deutsch, C., Furukawa, H., Mima, K., Murukami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483.Google Scholar
Guérin, S., Laval, G., Mora, P., Adam, J.C., Heron, A. & Bendib, A. (1995). Modulational and Raman instabilities in the relativistic regime. Phys. Plasmas 2, 2807.Google Scholar
Guérin, S., Mora, P. & Laval, G. (1998). Parametric instabilities due to relativistic electron mass variation. Phys. Plasmas 5, 376.Google Scholar
Hao, L., Liu, Z.J., Hu, X.Y. & Zheng, C.Y. (2013). Competition between the stimulated Raman and Brillouin scattering under the strong damping condition. Laser Part. Beams 31, 203.CrossRefGoogle Scholar
Kolber, T., Rozmus, W. & Tikhonchuk, V.T. (1995). Saturation of backward stimulated Raman scattering and enhancement of laser light scattering in plasmas. Phys. Plasmas 2, 256.Google Scholar
Krall, N.A. & Trivelpiece, A.W. (1973). Principles of Plasma Physics. New York: McGraw-Hill.Google Scholar
Kruer, W.L. (1974). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.Google Scholar
Labaune, C., Baldis, H.A., Renard, N., Schifano, E. & Michard, A. (1997). Interplay between ion acoustic waves and electron plasma waves associated with stimulated Brillouin and Raman scattering. Phys. Plasmas 4, 423.Google Scholar
Li, X.Y., Wang, J.X., Zhu, W.J., Ye, Y., Li, J. & Yu, Y. (2011). Enhanced inner-shell x-ray emission by femtosecond-laser irradiation of solid cone targets. Phys. Rev. E 83, 046404.CrossRefGoogle ScholarPubMed
Lindl, J.D., Amendt, P., Berger, R.L., Glendining, S.G., Glenzer, S.H., Hann, S.W., Kauffman, R.L., Landen, O.L. & Suter, L. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339.CrossRefGoogle Scholar
Liu, C.S. & Tripathri, V.K. (1994). Interaction of Electromagnetic waves with Electron beams and Plasmas. Singapore: World Scientific.Google Scholar
Mahmoud, S.T. & Sharma, R.P. (2001). Effect of pump depletion and self-focusing (hot spot) on stimulated Raman scattering in laser-plasma interaction. Laser Part. Beams 64, 613.Google Scholar
Michel, D.T., Depierreux, S., Stenz, C., Tassin, V. & Labaune, C. (2010). Exploring the saturation levels of stimulated raman scattering in the absolute regime. Phys. Rev. Lett. 104, 255001.Google Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F., Mainfray, G., Dulieu, A., Louis-Jacquet, M., Malka, G. & Miquel, J.L. (1995). Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 2953.Google Scholar
Omatsu, T., Kong, H.J., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., Fujita, H., Miyanaga, N., Nakatsuka, M., Wang, Y., Lu, Z., Zheng, Z., Zhang, Y., Kalal, M., Slezak, O., Ashihara, M., Yoshino, T., Hayashi, K., Tokizane, Y., Okida, M., Miyamoto, K., Toyoda, K., Grabar, A.A., Kabir, M.M., Oishi, Y., Suzuki, H., Kannari, F., Schaefer, C., Pandiri, K.R., Katsuragawa, M., Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M., Lin, D.Y., Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Sharma, R.P., Sharma, P., Rajput, S., Bhardwaj, A.K., Zhu, C.Y. & Gao, W. (2012). The current trends in SBS and phase conjugation. Laser Part. Beams 30, 117.Google Scholar
Paknezhad, A. (2012). Effect of relativistic nonlinearity on the growth rate of Brillouin instability in the interaction of a short laser pulse with an underdense plasma. Phys. Scr. 86, 065402.Google Scholar
Remington, B.A., Drake, R.P., Takabe, H. & Arnett, D. (1999). Modeling astrophysical phenomena in the laboratory with intense lasers. Sci. 284, 1488.Google Scholar
Rousseaux, C., Le Gloahec, M.R., Baton, S.D., Amiranoff, F., Fuchs, J., Gremillet, L., Adam, J.C., Héron, A. & Mora, P. (2002). Strong absorption, intense forward-Raman scattering and relativistic electrons driven by a short, high intensity laser pulse through moderately underdense plasmas. Phys. Plasmas 9, 4261.Google Scholar
Sharma, R.P., Vyas, A. & Singh, R.K. (2013). Effect of laser beam filamentation on coexisting stimulated Raman and Brillouin Scattering. Phys. Plasmas 20, 102108.Google Scholar
Shuller, S. & Porzio, A. (2010). Order statistics and extreme properties of spatially smoothed laser beams in laser-plasma interaction. Laser Part. Beams 28, 463.CrossRefGoogle Scholar
Sprangle, P., Tang, C. & Esarey, E. (1987). Relativistic Self-Focusing of Short-Pulse Radiation Beams in Plasmas. IEEE Trans. Plasma Sci. PS-15, 145.Google Scholar
Sun, G., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526.Google Scholar
Tajima, T. & Dawson, J.M. (1979). Laser Electron Accelerator. Phys. Rev. Lett. 43, 267.Google Scholar
Tajima, T. & Mourou, G. (2002). Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST 5, 031301.Google Scholar
Turnbull, D., Li, S., Morozov, A. & Suckewer, S. (2012). Simultaneous stimulated Raman, Brillouin, and electron-acoustic scattering reveals a potential saturation mechanism in Raman plasma amplifiers. Phys. Plasmas 19, 083109.Google Scholar
Umstadter, D. (2003). Relativistic laser-plasma interactions. J. Phys. D: Appl. Phys. 36, R151.Google Scholar
Walsh, C.J., Villeneuve D, M. & Baldis, H.A. (1984). electron plasma-wave production by stimulated Raman scattering: Competition with stimulated Brillouin scattering. Phys. Rev. Lett. 53, 1445.Google Scholar
Wang, X., Krishnan, M., Saleh, N., Wang, H. & Umstadter, D. (2000). Electron acceleration and the propagation of ultrashort high-intensity laser pulses in plasmas. Phys. Rev. Lett. 84, 5324.Google Scholar
Weber, S., Riconda, C., Lancia, L., Marquès, J.R., Mourou, G.A. & Fuchs, J. (2013). Amplification of ultrashort laser pulses by brillouin backscattering in plasmas. Phys. Rev. Lett. 111, 055004.CrossRefGoogle ScholarPubMed