Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T06:46:05.398Z Has data issue: false hasContentIssue false

Studies of the interaction of an intense laser beam normally incident on an overdense plasma

Published online by Cambridge University Press:  14 April 2010

Magdi Shoucri*
Affiliation:
Institut de Recherche d'Hydro-Québec (IREQ), Varennes, Québec, Canada
Bedros Afeyan
Affiliation:
Polymath Research Inc., Pleasanton, California
*
Address correspondence and reprint requests to: M. Shoucri, Institut de Recherche d'Hydro-Québec (IREQ), Varennes, Québec J3X1S1, Canada. E-mail: [email protected]

Abstract

We present two contrasting cases of the interaction of a high intensity laser beam with overdense plasma, namely the case of a circular polarization, and the case of a linear polarization of the laser beam. An Eulerian-Vlasov code is used for the numerical solution of the one-dimensional relativistic Vlasov-Maxwell set of equations, for both electrons and ions. The laser beam is incident normally on the plasma surface. We consider the case when the laser wave free space wavelength λ0 is greater than the scale length of the jump in the plasma density at the plasma edge Ledge0 ≫ Ledge) and the ratio of the plasma density to the critical density is such that n/ncr ≫ 1. The incident high intensity laser radiation is pushing the electrons at the plasma surface through the ponderomotive pressure, producing a sharp density gradient at the plasma surface. There is a build-up of the electron density at this sharp edge that creates a space-charge, giving rise to a longitudinal electric field. The results obtained differ substantially in several aspects when circular or linear polarization for the incident laser wave is considered. In the case of a circular polarization, the radiation pressure is pushing the sharp edge in the forward direction, and the ions are accelerated and reach a free streaming expansion phase where they are neutralized by the electrons. For the case of a linear polarization, there is a standing structure with a sharp edge that forms at the wave front, and in this case, the electrons at the plasma edge oscillate nonlinearly in the field of the wave, which periodically goes to zero. This results in an important distorsion in the reflected electromagnetic wave that includes the generation of harmonics. We present two simulations to illustrate the differences between these two cases. The generation and propagation of collisionless shock waves in these systems are investigated. The results underline the importance of including the ion dynamics in the interaction of high intensity laser waves with overdense plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akli, K.U., Hansen, S.B., Kemp, A.J., Freeman, R.R., Beg, F.N., Clark, D.C., Chen, S.D., Hey, D., Hatchett, S.P., Highbarger, K., Giraldez, E., Green, J.S., Gregori, G., Lancaster, K.L., Ma, T., MacKinnon, A.J., Norreys, P., Patel, N., Pasley, J., Shearer, C., Stephens, R.B., Stoeckl, C., Storm, M., Theobald, W., Van Woerkem, L.D., Weber, R. & Key, M.H. (2008). Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities. Phys. Rev. Lett. 100, 165002/1–4.CrossRefGoogle ScholarPubMed
Baeva, T., Gordienko, S. & Pukhov, A. (2006). Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404/1–10.CrossRefGoogle ScholarPubMed
Berezinskii, V.S., Bulanov, V.S., Dogiel, V.A., Ginzburg, V.L. & Ptuskin, V.S. (1990). Astrophysics of Cosmic Rays. Amsterdam: Elsevier.Google Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745757.CrossRefGoogle Scholar
Bulanov, S.S., Brantov, A., Bychenkov, V.Yu., Chvykov, V., Kalinchenko, G., Matsuoka, T., Rousseau, P., Reed, S., Yanovsky, V., Krushelnick, K., Litzengerg, D.W. & Maksimchuk, A. (2008). Accelerating protons to therapeutic energies with ultraintense, ultraclean, and ultrashort laser pulses. Med. Phys. 35, 17701776.CrossRefGoogle ScholarPubMed
Cao, L.F., Uschman, I., Zamponi, F., Kampfer, T., Fuhrmann, A., Forster, E., Holl, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.CrossRefGoogle Scholar
Cerchez, M., Jung, R., Osterholz, J., Toncian, T., Willi, O., Mulser, P. & Ruhl, H. (2008). Absorption of ultrashort laser pulses in strongly overdense targets. Phys. Rev. Lett. 100, 245001/1–4.CrossRefGoogle ScholarPubMed
Denavit, J. (1992). Absortion of high intensity subpicosecond lasers on solid density targets. Phys. Rev. Lett. 69, 30523055.CrossRefGoogle Scholar
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003/1–4.CrossRefGoogle ScholarPubMed
Fernandez, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Gautier, D.C., Hegelich, B.M., Schmitt, M.J., Temporal, M. & Yin, L. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004/1–8.CrossRefGoogle Scholar
Guérin, S., Mora, P., Adam, J.-C., Héron, A. & Laval, G. (1996). Propagation of ultraintense laser pulses through overdense plasma layers. Phys. Plasmas 3, 26932701.CrossRefGoogle Scholar
Hörlein, R., Nomura, Y., Osterhoff, J., Major, Zs, Karsch, S., Krausz, F. & Tsakiris, G.D. (2008). High harmonics from solid surfaces as a source of ultra-bright XUV radiation for experiments. Plasma Phys. Contr. Fusion 50, 124002/1–13.CrossRefGoogle Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V.T. (2008). Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. Spec. Topics- Accel. Beams 11, 031301/1–14.Google Scholar
Laska, L., Jungwirth, K., Krasa, J., Krousky, E., Pfeifer, M., Rohlena, K., Velyhan, A., Ullschmied, J., Gammino, S., Torrisi, L., Badziak, J., Parys, P., Rosinski, M., Ryc, L. & Wolowski, J. (2008). Angular distributions of ions emitted from plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 26, 555565.CrossRefGoogle Scholar
Lavocat-Dubuis, X. & Matte, J.P. (2009). Numerical simulation of harmonic generation by relativistic laser interaction with a grating. Phys. Rev. E 80, 055401/1–4.CrossRefGoogle ScholarPubMed
Lichters, R.M., ter Vehn, J.M. & Pukhov, A. (1996). Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 34253437.CrossRefGoogle Scholar
Liseikina, T.V. & Macchi, A. (2007). Features of ion acceleration by circularly polarized laser pulses. Appl. Phys. Lett. 91, 171502/1–4.CrossRefGoogle Scholar
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasms Phys. Contr. Fusion 50, 124033/1–9.Google Scholar
Macchi, A., Cattani, F., Liseykina, T.V. & Cornolti, F. (2005). Laser acceleration of ion bunches at the front surface of overdense plasmas. Phys. Rev. Lett. 94 165003/1–4.CrossRefGoogle ScholarPubMed
Quéré, F., Thaury, C., Monot, P., Dobosz, S., Martin, Ph., Geindre, J.-P. & Audebert, P. (2005). Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004/1–4.Google Scholar
Quéré, F., Thaury, C., George, H., Geingre, J.P., Lefebvre, E., Bonnaud, G., Monot, P. & Martin, Ph. (2008). High-order harmonic generation using plasmas mirrors Plasma Phys. Contr. Fusion 50, 124007/1–7.CrossRefGoogle Scholar
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021/1–13.CrossRefGoogle Scholar
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlström, C.-G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt laser-plasma interactions. Nat. Phys. 3, 5862.CrossRefGoogle Scholar
Salamin, Y.I., Harman, Z. & Keitel, C.H. (2008). Direct high-power laser acceleration of ions for medical applications. Phys. Rev. Lett. 100, 155004/1–4.CrossRefGoogle ScholarPubMed
Shoucri, M. (2008 a). Numerical simulation of wake-Field acceleration using an Eulerian-Vlasov code. Comm. Comp. Phys. 4, 703718.Google Scholar
Shoucri, M. (2008 b). Eulerian codes for the numerical solution of the Vlasov equation. Comm. Nonl. Sci. Num. Simul. 13, 174182.CrossRefGoogle Scholar
Shoucri, M. (2008 c). Numerical Solution of Hyperbolic Differential Equations. New-York: Nova Science Publishers.Google Scholar
Shoucri, M. (2008 d). The application of the method of characteristics for the numerical solution of hyperbolic differential equations. In Numerical Simulation Research Progress (Simone, P., et al. Eds.), p. 198. New-York: Nova Science Publishers.Google Scholar
Shoucri, M., Afeyan, B. & Charbonneau-Lefort, M. (2008). Numerical simulation for ion acceleration in an intense laser wave incident on an overdense plasma. J. Phys. D Appl. Phys. 41, 215205/1–9.CrossRefGoogle Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Teubner, U. & Gibbon, P. (2009). High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445479.CrossRefGoogle Scholar
Wilks, S.C., Kruer, W.L. & Mori, W.B. (1993). Odd harmonic generation of ultra-intense laser pulses reflected from an overdense plasma. IEEE Trans. Plasmas Sci. 21, 120124.CrossRefGoogle Scholar
Yogo, A., Daido, H., Bulanov, S.V., Nemoto, K., Oishi, Y., Nayuki, T., Fujii, T., Ogura, K., Orimo, S., Sagisaka, A., Ma, J.-L., Esirkepov, T.Zh., Mori, M., Nishiuchi, M., Pirozhkov, A.S., Nakamura, S., Noda, A., Nagatomo, H., Kimura, T. & Tajima, T. (2008). Laser ion acceleration via control of the near-critical density target. Phys. Rev. E 77, 016401/1–6.CrossRefGoogle ScholarPubMed
Zepf, M., Dromey, B., Kar, S., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kneip, S., Markey, K., Nagel, S.R., Simpson, P.T., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K. & Norreys, P.A. (2007). High harmonic from relativistically oscillating plasma surfaces-a high brightness attosecond source at the keV photon energies. Plasma Phys. Contr. Fusion 49, B149B162.CrossRefGoogle Scholar