Published online by Cambridge University Press: 09 March 2009
The stopping power of dense nonideal plasmas is calculated in different approximations. The T-matrix approximation for binary collisions is compared with the random phase approximation (RPA) approximation for dielectric fluctuations. Within a microscopic model, the dynamical evolution of the velocity of the projectile is calculated. It reproduces well experimental values for the stopping of fast heavy ions. Further improvements due to correlations are discussed. Both concepts, cluster decomposition and memory, are compared and it is found that they lead to the same quantum virial corrections of the Beth-Uhlenbeck type in equilibrium. However, memory in the kinetic equation causes an additional renormalization of the effective energy transfer in nonequilibrium.