Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T22:16:13.697Z Has data issue: false hasContentIssue false

Stopping of a relativistic electron beam in a plasma irradiated by an intense laser field

Published online by Cambridge University Press:  28 January 2014

H.B. Nersisyan*
Affiliation:
Institute of Radiophysics and Electronics, Ashtarak, Armenia Centre of Strong Fields Physics, Yerevan State University, Yerevan, Armenia
C. Deutsch
Affiliation:
LPGP (UMR-CNRS 8578), Université Paris XI, Orsay, France
*
Address correspondence and reprint requests to: H.B. Nersisyan, Institute of Radiophysics and Electronics, 0203 Ashtarak, Armenia. E-mail: [email protected]

Abstract

The effects of a radiation field (RF) on the interaction process of a relativistic electron beam (REB) with an electron plasma are investigated. The stopping power of the test electron averaged with a period of the RF has been calculated assuming an underdense plasma, ω0 > ωp, where ω0 is the frequency of the RF and ωp is the plasma frequency. In order to highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. In particular, it has been shown that the weak RF increases the mean energy loss for small angles between the velocity of the REB and the direction of polarization of the RF while decreasing it at large angles. Furthermore, the relative deviation of the energy loss from the field-free value is strongly reduced with increasing the beam energy. Special case of the parallel orientation of the polarization of the RF with respect to the beam velocity has been also considered. At high-intensities of the RF two extreme regimes have been distinguished when the excited harmonics cancel effectively each other reducing strongly the energy loss or increasing it due to the constructive interference. Moreover, it has been demonstrated that the energy loss of the ultrarelativistic electron beam increases systematically with the intensity of the RF exceeding essentially the field-free value.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akopyan, E.A., Nersisyan, H.B. & Matevosyan, H.H. (1997). Energy losses of a charged particle in a plasma in an external field allowing for the field action on plasma and particle motion. Radiophys. Quant. Electrons. 40, 823826.Google Scholar
Alexandrov, A.F., Bogdankevich, L.S. & Rukhadze, A.A. (1984). Principles of Plasma Electrodynamics. Heidelberg: Springer.Google Scholar
Aliev, Yu.M., Gorbunov, L.M. & Ramazashvili, R.R. (1971). Polarization losses of a fast heavy particle in a plasma located in a strong high frequency field. Zh. Eksp. Teor. Fiz. 61, 14771480.Google Scholar
Arista, N.R., Galvão, R.O.M. & Miranda, L.C.M. (1989). Laser-field effects on the interaction of charged particles with a degenerate electron gas. Phys. Rev. A 40, 38083816.Google Scholar
Arista, N.R., Galvão, R.O.M. & Miranda, L.C.M. (1990). Influence of a strong laser field on the stopping power for charged test particles in nondegenerate plasmas. J. Phys. Soc. Jpn. 59, 544552.Google Scholar
Bateman, H. & Erdelyi, A. (1953). Higher Transcendental Functions, vol. 2. New York: McGraw-Hill.Google Scholar
Couillaud, C., Deicas, R., Nardin, Ph., Beuve, M.A., Guihaume, J.M., Renaud, M., Cukier, M., Deutsch, C. & Maynard, G. (1994). Ionization and stopping of heavy ions in dense laser–ablated plasmas. Phys. Rev. E 49, 15451562.Google Scholar
D'Avanzo, J., Lontano, M. & Bortignon, P.F. (1993). Fast–ion interaction in dense plasmas with two–ion correlation effects. Phys. Rev. E 47, 35743584.Google Scholar
Deutsch, C. (1986). Inertial confinement fusion driven by intense ion beams. Ann. Phys. Paris 11, 1111.Google Scholar
Deutsch, C. (1995). Correlated stopping of Coulomb clusters in a dense jellium target. Phys. Rev. E 51, 619631.Google Scholar
Deutsch, C. & Fromy, P. (2001). Correlated stopping of relativistic electron beams in supercompressed DT fuel. Nucl. Instrum. Methods Phys. Res. A 464, 243246.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.Google Scholar
Frank, A., Blažević, A., Grande, P.L., Harres, K., Heßling, Th., Hoffmann, D.H.H., Knobloch-Maas, R., Kuznetsov, P.G., Nürnberg, F., Pelka, A., Schaumann, G., Schiwietz, G., Schökel, A., Schollmeier, M., Schumacher, D., Schütrumpf, J., Vatulin, V.V., Vinokurov, O.A. & Roth, M. (2010). Energy loss of argon in a laser-generated carbon plasma. Phys. Rev. E 81, 026401 (1–6).Google Scholar
Frank, A., Blažević, A., Bagnoud, V., Basko, M.M., Börner, M., Cayzak, W., Kraus, D., Heßling, Th., Hoffmann, D.H.H., Ortner, A., Otten, A., Pelka, A., Pepler, D., Schumacher, D., Tauschwitz, An. & Roth, M. (2013). Energy loss and charge transfer of argon in a laser-generated carbon plasma. Phys. Rev. Lett. 110, 115001 (1–5).Google Scholar
Gradshteyn, I.S. & Rizhik, I.M. (1980). Table of Integrals, Series and Products. New York: Academic.Google Scholar
Hoffmann, D.H.H. (2008). Intense laser and particle beams interaction physics toward inertial fusion. Laser Part. Beams 26, 295296.Google Scholar
Hoffmann, D.H.H., Tahir, N.A., Udrea, S., Rosmej, O., Meister, C.V., Varentsov, D., Roth, M., Schaumann, G., Frank, A., Blažević, A., Ling, J., Hug, A., Menzel, J., Hessling, Th., Harres, K., Günther, M., El-Moussati, S., Schumacher, D. & Imran, M. (2010). High energy density physics with heavy ion beams and related interaction phenomena. Contrib. Plasma Phys. 50, 715.Google Scholar
Hu, Z.-H., Song, Y.-H., Mišković, Z.L. & Wang, Y.-N. (2011). Energy dissipation of ion beam in two-component plasma in the presence of laser irradiation. Laser Part. Beams 29, 299304.Google Scholar
Nellis, W.J. (2006). Dynamic compression of materials: metallization of fluid hydrogen at high pressures. Rep. Prog. Phys. 69, 14791580.Google Scholar
Nersisyan, H.B. & Akopyan, E.A. (1999). Stopping and acceleration effect of protons in a plasma in the presence of an intense radiation field. Phys. Lett. A 258, 323328.Google Scholar
Nersisyan, H.B. & Deutsch, C. (2011). Stopping of ions in a plasma irradiated by an intense laser field. Laser Part. Beams 29, 389397.Google Scholar
Nersisyan, H.B. & Deutsch, C. (2012). Instabilities for a relativistic electron beam interacting with a laser-irradiated plasma. Phys. Rev. E 85, 056414 (1–19).Google Scholar
Nersisyan, H.B., Toepffer, C. & Zwicknagel, G. (2007). Interactions Between Charged Particles in a Magnetic Field: A Theoretical Approach to Ion Stopping in Magnetized Plasmas. Heidelberg: Springer.Google Scholar
Oguri, Y., Tsubuku, K., Sakumi, A., Shibata, K., Sato, R., Nishigori, K., Hasegawa, J. & Ogawa, M. (2000). Heavy ion stripping by a highly-ionized laser plasma. Nucl. Instrum. Methods Phys. Res. B 161–163, 155158.Google Scholar
Piran, T. (2005). The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 11431210.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser–accelerated proton beams. Phys. Rev. Lett. 86, 436439.Google Scholar
Roth, M., Stöckll, C., Süß, W., Iwase, O., Gericke, D.O., Bock, R., Hoffmann, D.H.H., Geissel, M. & Seelig, W. (2000). Energy loss of heavy ions in laser-produced plasmas. Europhys. Lett. 50, 2834.Google Scholar
Stöckl, C., Frankenheim, O.B., Roth, M., Suß, W., Wetzler, H., Seelig, W., Kulish, M., Dornik, M., Laux, W., Spiller, P., Stetter, M., Stöwe, S., Jacoby, J. & Hoffmann, D.H.H. (1996). Interaction of heavy ion beams with dense plasmas. Laser Part. Beams 14, 561574.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.Google Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001 (1–4).Google Scholar
Tavdgiridze, T.L. & Tsintsadze, N.L. (1970). Energy losses by a charged particle in an isotropic plasma located in an external high frequency electric field. Zh. Eksp. Teor. Fiz. 58, 975978 [English translation: Sov. Phys. JETP 31, 524–525 (1970)].Google Scholar
Wang, G.-Q., Song, Y.-H., Wang, Y.-N. & Mišković, Z.L. (2002). Influence of a laser field on Coulomb explosions and stopping power for swift molecular ions interacting with solids. Phys. Rev. A 66, 042901 (1–11).Google Scholar
Wang, G.-Q., E, P., Wang, Y.-N., Hu, Z.-H., Gao, H., Wang, Y.-C., Yao, L., Zhong, H.-Y., Cheng, L.-H., Yang, K., Liu, W. & Xu, D.-G. (2012). Influence of a strong laser field on Coulomb explosion and stopping power of energetic H3+ clusters in plasmas. Phys. Plasmas 19, 093116 (1–5).Google Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.-G. (1999). Stopping of heavy ions in plasmas at strong coupling. Phys. Rep. 309, 117208.Google Scholar