Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T07:48:16.693Z Has data issue: false hasContentIssue false

Spontaneous and artificial direct nanostructuring of solid surface by extreme ultraviolet laser with nanosecond pulses

Published online by Cambridge University Press:  13 November 2015

K. Kolacek*
Affiliation:
Institute of Plasma Physics, AS CR, v.v.i., Za Slovankou 1782/3, 182 00 Praha 8, Czech Republic
J. Schmidt
Affiliation:
Institute of Plasma Physics, AS CR, v.v.i., Za Slovankou 1782/3, 182 00 Praha 8, Czech Republic
J. Straus
Affiliation:
Institute of Plasma Physics, AS CR, v.v.i., Za Slovankou 1782/3, 182 00 Praha 8, Czech Republic
O. Frolov
Affiliation:
Institute of Plasma Physics, AS CR, v.v.i., Za Slovankou 1782/3, 182 00 Praha 8, Czech Republic
V. Prukner
Affiliation:
Institute of Plasma Physics, AS CR, v.v.i., Za Slovankou 1782/3, 182 00 Praha 8, Czech Republic
R. Melich
Affiliation:
Institute of Plasma Physics, AS CR, v.v.i., Za Slovankou 1782/3, 182 00 Praha 8, Czech Republic
P. Psota
Affiliation:
Institute of Plasma Physics, AS CR, v.v.i., Za Slovankou 1782/3, 182 00 Praha 8, Czech Republic
*
Address correspondence and reprint requests to: K. Kolacek, Email: [email protected]

Abstract

Nanostructuring can be either spontaneously appearing (such as laser-induced periodic surface structures, and diffraction patterns – for example, in windows of grid proximity-standing at the ablated target-surface) or artificially created (like – as we hoped – interference patterns) that can be in some extend controlled. Due to that a new interferometer (belonging to wave-front division category) with two aspheric mirrors has been developed. Each of these mirrors reflects approximately one half of incoming laser beam and focuses it into a point image. Both focused beams have to intersect each other, and in the intersection region an interference pattern was expected. However, the first tests showed that some other spontaneously appearing interference pattern with substantially larger fringe-pitch is generated. The origin of this idle interference pattern is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attwood, D. (1999). Soft X-rays and Extreme Ultraviolet Radiation. Principles and Applications. Cambridge, New York, Melbourne, Madrid: Cambridge University Press. Chapter 10.1, Equation (10.1).Google Scholar
Auzelyte, V., Dais, C., Farquet, P., Gruetzmacher, D., Heyderman, L.J., Olliges, S., Padeste, C., Sahoo, P.K., Thomson, T., Turchanin, A., David, C. & Solak, H.H. (2009). Extreme ultraviolet interference lithography at the Paul Scherrer Institute. J. Micro/Nanolith, MEMS, MOEMS 8, Art. No. 021204, 110.Google Scholar
Capeluto, M.G., Vaschenko, G., Grisham, M., Marconi, M.C., Luduena, S., Pietrasanta, L., Lu, Y.F., Parkinson, B., Menoni, C.S. & Rocca, J.J. (2006). Nanopatterning with interferometric lithography using a compact λ = 46.9 nm laser. IEEE Trans. Nanotechnol. 5, 37.Google Scholar
Capeluto, M.G., Wachulak, P., Marconi, M.C., Patel, D., Menoni, C.S., Rocca, J.J., Iemmi, C., Anderson, E.H., Chao, W. & Attwood, D.T. (2007). Table top nanopatterning with extreme ultraviolet laser illumination. Microelectron. Eng. 84, 721724.Google Scholar
Chalupsky, J., Juha, L., Hajkova, V., Cihelka, J., Vysin, L., Gautier, J., Hajdu, J., Hau-Riege, S.P., Jurek, M., Krzywinski, J., London, R.A., Papalazarou, E., Pelka, J.B., Rey, G., Sebban, S., Sobierajski, R., Stojanovic, N., Tiedtke, K., Toleikis, S., Tschentscher, T., Valentin, C., Wabnitz, H. & Zeitoun, P. (2009). Non-thermal desorption/ablation of molecular solids induced by ultra-short soft X-ray pulses. Opt. Express 17, 208217.Google Scholar
Delmotte, F., Ravet, M.F., Bridou, F., Varniere, F., Zeitoun, P., Hubert, S., Vanbostal, L. & Soullie, G. (2002). X-ray-ultraviolet beam splitters for the Michelson interferometer. Appl. Opt. 41, 59055912.Google Scholar
Eberl, E., Wagner, T., Jacoby, J., Tauschwitz, A. & Hoffmeann, D.H.H. (1997). Soft X-ray lasing at 519.7 Ă in a recombining Z-pinch plasma. Laser Part. Beams 15, 589595.Google Scholar
Fernandez, A. & Phillion, D.W. (1998). Effects of phase shifts on four-beam interference patterns. Appl. Opt. 37, 473478.Google Scholar
Fernandez-Perea, M., Larruquert, J.I., Aznarez, J.A., Mendez, J.A., Poletto, L., Malvezzi, A.M., Giglia, A. & Nannarone, S. (2006). Determination of optical constants of scandium films in the 20–1000 eV range. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 23, 28802887.Google Scholar
Frolov, O., Kolacek, K., Straus, J., Schmidt, J., Prukner, V. & Choukourov, A. (2013). Application of EUV optics to surface modification of materials. Damage to VUV, EUV, and X-ray optics IV; and EUV and X-ray optics: Synergy between Laboratory and Space III. In Proc. of SPIE, (Juha, L. et al. Ed.), Vol. 8777, p. 877707.Google Scholar
Juha, L., Bittner, M., Chvostova, D., Krasa, J., Kozlova, M., Pfeifer, M., Polan, J., Prag, A.R., Rus, B., Stupka, M., Feldhaus, J., Letal, V., Otcenasek, Z., Krzywinski, J., Nietubyc, R., Pelka, J.B., Andrejczuk, A., Sobierajski, R., Ryc, L., Boody, F.P., Fiedorowicz, H., Bartnik, A., Mikolajczyk, J., Rakowski, R., Kubat, P., Pina, L., Horvath, M., Grisham, M.E., Vaschenko, G.O., Menoni, C.S. & Rocca, J.J. (2005). Short-wavelength ablation of molecular solids: Pulse duration and wavelength effects. J. Microlith. Microfab. Microsyst. 4, Article No. 033007, 111.Google Scholar
Juha, L. & Kolacek, K. (2014). Surface micro (nano) structuring using extreme ultraviolet and soft X-ray lasers. Proc. 14th Int. Conf. on X-ray Lasers, 26–30 May 2014, Fort Collins, Co., USA (to be published).Google Scholar
Kolacek, K. (2003 a). Principles and present state of capillary-discharge-pumped soft X-ray lasers. Laser Interactions with Matter. Proc. SPIE 5228, 557573.Google Scholar
Kolacek, K., Frolov, O., Melich, R., Prukner, V., Schmidt, J. & Straus, J. (2013 b). Interferometer for extreme ultraviolet region. Patented Applied Gadget PUV 2013-27549.Google Scholar
Kolacek, K., Schmidt, J., Bohacek, V., Ripa, M., Rupasov, A.A. & Shikanov, A.S. (2003 b). Properties of soft X-ray emission from a fast capillary discharge. Plasma Phys. Rep. 29, 290295.Google Scholar
Kolacek, K., Schmidt, J., Straus, J., Frolov, O., Juha, L. & Chalupsky, J. (2015). Interaction of extreme ultraviolet laser radiation with solid surface: Ablation, desorption, nanostructuring. Proc. SPIE 9255, Art. No. 92553U, 19.Google Scholar
Kolacek, K., Schmidt, J., Straus, J., Frolov, O., Prukner, V. & Melich, R. (2014). An extreme ultraviolet interferometer suitable to generate dense interference pattern. SPIE Optics + Photonics, advances in metrology for X-ray and EUV optics V. In Proc. of SPIE, (Assoufid, L., Ohashi, H. and Asundi, A.K., Eds.), Vol. 9206, Article No. 92060D, 19.Google Scholar
Kolacek, K., Schmidt, J., Straus, J., Frolov, O., Prukner, V., Melich, R. & Choukourov, A. (2013 a). A new method of determination of ablation threshold contour in the spot of focused XUV laser beam of nanosecond duration. Damage to VUV, EUV, and X-ray Optics IV; and EUV and X-ray optics: Synergy between Laboratory and Space III. Proc. SPIE 8777, 87770N.Google Scholar
Kolacek, K., Straus, J., Schmidt, J., Frolov, O., Prukner, V., Shukurov, A., Holy, V., Sobota, J. & Fort, T. (2012). Nano-structuring of solid surface by extreme ultraviolet Ar8+ laser. Laser Part. Beams 30, 5763.Google Scholar
Kozlova, M. (2009). Advanced soft X-ray interferometer for diagnostics of dense plasmas and surface holography. PhD Thesis. Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic.Google Scholar
Marconi, M.C. & Wachulak, P.W. (2010). Extreme ultraviolet lithography with table top lasers. Progress Quantum Electron. 34, 173190.Google Scholar
Margarone, D., Rus, B., Kozlova, M., Nejdl, J., Mocek, T., Homer, P., Polan, J., Stupka, M., Cassou, K., Kazamias, S., Lagron, J.C., Ros, D., Danson, C. & Hawkes, S. (2010). Investigations of laser-induced damages in fused silica optics using X-ray laser. J. Appl. Phys. 107, Article No. 103103, 17.Google Scholar
Matthews, D.L., Hagelstein, P.L., Rosen, M.D., Eckart, M.J., Ceglio, N.M., Hazi, A.U., Medecki, H., MacGowan, B.J., Trebes, J.E., Whitten, B.L., Campbell, E.M., Hatcher, C.W., Hawryluk, A.M., Kauffman, R.L., Pleasance, L.D., Rambach, G., Scofield, J.H., Stone, G. & Weaver, T.A. (1985). Demonstration of soft-X-ray amplifier. Phys. Rev. Lett. 54, 110113.Google Scholar
Mocek, T., Rus, B., Kozlova, M., Polan, J., Homer, P., Juha, L., Hajkova, V. & Chalupsky, J. (2008). Single-shot soft X-ray laser-induced ablative microstructuring of organic polymer with demagnifying projection. Opt. Lett. 33, 10871089.Google Scholar
Nielsen, J., Jankowski, A., Friedman, L. & Walton, C.C. (2004). Developing multi-layer mirror technology near 45 nm using Sc/Si interfaces. Report No. UCRL-TR-202362.Google Scholar
NIST (1997). X-Ray Form Factor, Attenuation, and Scattering Tables (Online: 1997, last update: 2005), Physical Measurement Laboratory. http://www.nist.gov/pml/data/ffast/index.cfmGoogle Scholar
Palik, E.D. (Ed.) (1985). Handbook of Optical Constants of Solids, Academic Press, Orlando.Google Scholar
Park, G.H. (2010) (posted July 08, 2010). Expert reviews, InterNano website. http://www.nanowerk.com/spotlight/spotid=17055.phpGoogle Scholar
Ritucci, A., Reale, A., Zuppella, P., Reale, L., Tucceri, P., Tomassetti, G., Bettotti, P. & Pavesi, L. (2007). Interference lithography by a soft X-ray laser beam: Nanopatterning on photoresists. J. Appl. Phys. 102, Article No. 034313, 14.Google Scholar
Rocca, J.J. (1999). Table-top soft X-ray lasers. Rev. Sci. Instrum. 70, 37993827.Google Scholar
Sipe, J.E., Young, J.F., Preston, J.S. & Vandriel, H.M. (1983). Laser-induced periodic surface structure. 1. Theory. Phys. Rev. B 27, 11411154.Google Scholar
Smith, R.F., Dunn, J., Hunter, J.R., Nilsen, J., Hubert, S., Jacquemot, S., Remond, C., Marmoret, R., Fajardo, M., Zeitoun, P., Vanbostal, L., Lewis, C.L.S., Ravet, M.F. & Delmotte, F. (2003). Longitudinal coherence measurements of a transient collisional X-ray laser. Opt. Lett. 28, 22612263.Google Scholar
Steeg, B., Juha, L., Feldhaus, J., Jacobi, S., Sobierajski, R., Michaelsen, C., Andrejczuk, A. & Krzywinski, J. (2004). Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron lasers. Appl. Phys. Lett. 84, 657659.Google Scholar
Svatos, J., Joyeux, D., Phalippou, D. & Polack, F. (1993). Soft-X-ray interferometer for measuring the refractive-index of materials. Opt. Lett. 18, 13671369.Google Scholar
Uspenskii, Y.A., Seely, J.F., Popov, N.L., Vinogradov, A.V., Pershin, Y.P. & Kondratenko, V.V. (2004). Efficient method for determination of extreme-ultraviolet optical constants in reactive materials: Application to scandium and titanium. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 21, 298305.Google Scholar
Vinogradov, A.V. (2002). Multilayer X-ray optics. Quantum Electron. 32, 11131121.Google Scholar
Wachulak, P., Grisham, M., Heinbuch, S., Martz, D., Rockward, W., Hill, D., Rocca, J.J., Menoni, C.S., Anderson, E. & Marconi, M. (2008). Interferometric lithography with an amplitude division interferometer and a desktop extreme ultraviolet laser. J. Opt. Soc. Am. B: Opt. Phys. 25, B104B107.Google Scholar
Wachulak, P.W., Capeluto, M.G., Marconi, M.C., Menoni, C.S. & Rocca, J.J. (2007 b). Patterning of nano-scale arrays by table-top extreme ultraviolet laser interferometric lithography. Opt. Express 15, 34653469.Google Scholar
Wachulak, P.W., Capeluto, M.G., Marconi, M.C., Patel, D., Menoni, C.S. & Rocca, J.J. (2007 a). Nanoscale patterning in high resolution HSQ photoresist by interferometric lithography with tabletop extreme ultraviolet lasers. J. Vacuum Sci. Technol. B 25, 20942097.Google Scholar
Young, J.F., Preston, J.S., Vandriel, H.M. & Sipe, J.E. (1983). Laser-induced periodic surface structure. 2. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 11551172.Google Scholar
Young, J.F., Spie, J.E. & Vandriel, H.M. (1984). Laser-induced periodic surface structure. 3. Fluence regimes, the role of feedback, and details of the induced topography in germanium. Phys. Rev. B 30, 20012015.Google Scholar