Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T09:20:02.748Z Has data issue: false hasContentIssue false

Spectroscopic characterization of laser-ablated manganese sulfate plasma

Published online by Cambridge University Press:  28 January 2014

M. Salik*
Affiliation:
School of Science, Beijing Jiaotong University, Beijing, China
M. Hanif
Affiliation:
MCS, National University of Sciences &Technology, Rawalpindi, Pakistan
J. Wang
Affiliation:
School of Science, Beijing Jiaotong University, Beijing, China
X. Q. Zhang
Affiliation:
School of Science, Beijing Jiaotong University, Beijing, China
*
Address correspondence and reprint requests to: M. Salik, School of Science, Beijing Jiaotong University, Beijing, China100044. E-mail: [email protected]

Abstract

In this work, we present the spectroscopic studies of the plasma generated at the surface of manganese sulfate by the fundamental (1064 nm) and second harmonic (532 nm) of a Q-switched Nd:YAG laser. The 4s4p 4F7/2→ 4s 2H9/2 at 438.80 nm, 4p 2I11/2 → 4s22I11/2 at 440.80 nm, 4p 4G11/2 → 4s 2H9/2 at 464.27 nm, 4p 4F5/2→ 4s 4D7/2 at 467.16, 4p 4F5/2 → 4s24G 7/2 at 515.08 nm, and 4p 4F7/2 → 4s2 4G 9/2 at 519.65 nm transitions have been used to estimate the electron temperature through the Boltzmann plot method. The number density has been estimated from the Stark broadened profiles of the spectral line 348.30 nm. The spatial behavior of the electron temperature and number density has been examined at different ambient air pressures and with laser irradiance. The temperature and number density are found to be in the range from 9842 K to 9371 K and 1.58 × 1017 to 3.26 × 1016 cm−3 for the 1064 nm laser, from 9668 to 9297 K and 2.27 × 1017 to 5.79 × 1016 cm−3 for the 532 nm laser.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anif, M., Salik, M. & Baig, M.A. (2013). Laser based optical emission studies of zinc oxide (ZnO) plasma. Plasma Sci. Tech. 15, 16.Google Scholar
Bredice, F., Borges, F.O., Sobral, H., Villagran-Muniz, M., Di Rocco, H.O., Cristoforetti, G., Legnaioli, S., Palleschi, V., Salvetti, A. & Tognoni, E. (2007). Measurement of Stark broadening of Mn I and Mn II spectral lines in plasmas used for laser-induced breakdown spectroscopy. Spectrochim. Acta B 62, 12371245.CrossRefGoogle Scholar
Chang, JJ. & Warner, B.E. (1996). “Laser-plasma interaction during visible laser ablation of metals. Appl. Phys. Lett. 69, 473475.Google Scholar
Cremers, D.A. & Radziemski, L.J. (2006). Handbook of Laser-Induced Breakdown Spectroscopy. New York: John Wiley.Google Scholar
Dhananjay, , Nagaraju, J. & Krupanidhi, S.B. (2006). dc and ac transport properties of Mn-doped ZnO thin films grown by pulsed laser ablation. Mater. Sci. Engin. B 133, 7076.Google Scholar
Dongxia, Y., Xiaoyan, L., Dingyong, H., Hui, H. & Liang, Z. (2012). Study on microstructure and mechanical properties of Al-Mg-Mn-Er alloy joints welded by TIG and laser beam. Mater. Design 40, 117123.Google Scholar
Griem, H.R. (1997). Principles of Plasma Spectroscopy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hakola, A., Heczko, O., Jaakkola, A., Kajava, T. & Ullakko, K. (2004). Ni-Mn-Ga films on Si, GaAs and Ni-Mn-Ga single crystals by pulsed laser deposition. Appl. Surf. Sci. 238, 155158.Google Scholar
Hanif, M., Salik, M. & Baig, M.A. (2013). Optical spectroscopic studies of titanium plasma produced by an Nd:YAG laser. Opt. Spectro. 114, 714.CrossRefGoogle Scholar
Hanif, M., Salik, M., Sheikh, N.M. & Baig, M.A. (2013). Laser-based optical emission studies of barium plasma. Appl. Phys. B 110, 563571.Google Scholar
Horiba, K., Ohguchi, H., Kobayashi, D., Kumigashira, H., Oshima, M., Nakagawa, N., Lippmaa, M., Ono, K., Kawasaki, M. & Koinuma, H. (2004). In situ Mn 2p-3d resonant photoemission study on La0.6Sr0.4MnO3 epitaxial thin films grown by laser MBE. J. Magn. Magnetic Mater. 272–276, 436437.Google Scholar
Ilyas, U., Rawat, R.S., Roshan, G., Tan, T.L., Lee, P., Springham, S.V., Zhang, S., Li Fengji, L., Chen, R. & Sun, H.D. (2011). Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Appl. Surf. Sci. 258, 890897.Google Scholar
Mayer, I., Pető, G., Karacs, A., Molnár, G. & Popov, I. (2012). “Divalent Mn in calcium hydroxyapatite by pulse laser deposition. Inorganic Chem. 40, 11071111.Google Scholar
McWhirter, R.W.P. (1965). Plasma Diagnostic Techniques (Huddleston, R. H. and Leonard, S. L., Eds). New York: Academic.Google Scholar
Miziolek, A.W., Palleschi, V. & Schechter, I. (2006). Laser-Induced Breakdown Spectroscopy. Cambridge: Cambridge University Press.Google Scholar
Nagaraja, K.K., Pramodini, S., Santhosh Kumar, A., Nagaraja, H.S., Poornesh, P. & Kekuda, D. (2013). Third-order nonlinear optical properties of Mn doped ZnO thin films under cw laser illumination. Opt. Mater. 35, 431439.Google Scholar
Pasquini, C., Cortez, J., Silva, Lucas M.C. & Gonzaga, F.B. (2007). Plasma diagnostic study of alumina (Al2O3) generated by the fundamental and second harmonics of a Nd:YAG laser. J. Braz. Chem. Soc. 18, 463.Google Scholar
Runge, R. & Minck, R.W. (1964). Spectrochim. Acta B 20, 733.Google Scholar
Rusak, D.A., Castle, B.C., Smith, B.W. & JWinefordner, J.D. (1998). Trends Anal. Chem. 17, 453.Google Scholar
Russo, R.E., Mao, X.L., Liu, H.C., Yoo, J.H. & Mao, S.S. (1999). Time resolved plasma diagnostics and mass removal during single-pulse laser ablation. Appl. Phys. A 69, S887S894.Google Scholar
Salik, M., Hanif, M. & Baig, M.A. (2011). IEEE Trans. Plasma Sci. 36, 116.Google Scholar
Sansonetti, E.E. & Martin, W.C. (2005). Hand book of basic atomic spectroscopic data, hand book of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data 34, 15592259.CrossRefGoogle Scholar
Singh, J.P. & Thakur, S.N. (2007). Laser-Induced Breakdown Spectroscopy. New York: Elsevier.Google Scholar
Sun, Q., Tran, M., Smith, B.W. & Winefordner, J.D. (2000). Determination of Mn and Si in iron ore by laser-induced plasma spectroscopy. Anal. Chim. Acta 413, 187195.Google Scholar
Tawfik, W. & Mohamed, Y. (2008). Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable echelle spectrometer with ICCD camera. Opt. Laser Techn. 40, 3038.Google Scholar