Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T22:34:26.219Z Has data issue: false hasContentIssue false

Spectral line limiting and polarization shift in plasmas of high particle and energy density

Published online by Cambridge University Press:  09 March 2009

B. I. Henry
Affiliation:
Department of Theoretical Physics, University of New South Wales, Kensington, Sydney 2033, Australia.

Abstract

The change of the energetic quantum levels of electrons in atoms or ions within plasma due to the electrostatic energy of the Debye sphere, is discussed on the basis of an electrostatic quantum model which permits an immediate, and therefore an integrated, inclusion of the Debye screening. The resulting Debye field leads to an alternative (temperature dependent) formulation of the Inglis-Teller Stark merging of spectral lines. In the new model the drowning of lines gives values closer to the Inglis-Teller limit than values given by the quantum approximation of the hydrogenic model. The straightforward calculation of the polarization shift based on the new model is closest to the experimental values and is between the very low values given by the semiclassical approach and the too high values given by the quantum approach of the hydrogenic effective charge model.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, E. A. M. & Burgess, D. D. 1979 J. Phys. B: Atom. Moke. Phys., 12, 2097.CrossRefGoogle Scholar
Berg, H. F., Ali, A. W., Lincke, R. & Griem, H. R. 1962, Phys. Rev. 125, 199.CrossRefGoogle Scholar
Berg, H. F. 1966 Z. Phys. 191, 503.CrossRefGoogle Scholar
Brodsky, J. S. 1976 Rev. Mod. Phys. 48, (2), S35.Google Scholar
Burgess, D. D., Fawcett, B. C. & Peacock, N. J. 1967 Proc. Phys. Soc. 92, 805.CrossRefGoogle Scholar
Burgess, D. D. & Peacock, N. J. 1971 J. Phys. B: Atom. Molec. Phys. 4, L94.CrossRefGoogle Scholar
Chowdury, S. S. 1969 J. Phys. B: Atom. Molec. Phys. 2, 1090.CrossRefGoogle Scholar
Debye, P. & Huckel, E. 1923 Physik. Zeitschrift. 24, 185.Google Scholar
Duclos, D. P. & Cambel, A. B. 1961 Z. Naturforsch. 16a, 711.CrossRefGoogle Scholar
Ecker, G. & Weizel, W. 1956 Ann. Physik. 17, 126.CrossRefGoogle Scholar
Ecker, G. & Kroll, W. 1963 Phys. of Fluids. 6, 62.CrossRefGoogle Scholar
Gabriel, A. H. & Volonté, S. 1973 J. Phys. B: Atom. Molec. Phys. 6, 2684.CrossRefGoogle Scholar
Garton, W. R. S., Parkinson, W. H. & Reeves, E. M. 1964 Astrophys. J., 140, 1269.CrossRefGoogle Scholar
Goto, T. & Burgess, D. D. 1974 J. Phys. B: Atom. Molec. Phys. 7, 857.CrossRefGoogle Scholar
Grieg, J. R., Griem, H. R. Jones, L. A. & Oda, T. 1970 Phys. Rev. Lett. 24, 3.CrossRefGoogle Scholar
Griem, , Hans, R. 1964 Plasma Spectroscopy, Mcgraw-Hill, New York p. 139.Google Scholar
Griem, , Hans, R. 1974 Spectral Line Broadening by Plasmas Academic Press, New York and London.Google Scholar
Griem, , Hans, R. 1981 in Laser Interaction and Related Plasma Phenomena (eds. Schwarz, H. & Hora, H.) Vol. 5B. Plenum.Google Scholar
Henry, B. I., 1980 Thesis, Dept. Theoret Phys. Univ. New South Wales.Google Scholar
Henry, B. I. & Hora, H. 1982 Opt. Comm. 44, No. 3.Google Scholar
Hinckley, S., Hora, H., Kane, E. L., Kelly, J. C., Kentwell, G., Lalousis, P., Lawrence, V. F., Mavaddat, R., Novak, M. M., Ray, P. D. & Schwartz, A. 1980 Experim. Tech. Phys. 28, 417.Google Scholar
Holtsmark, J. 1924 Phys. Zs. 25, 73.Google Scholar
Hora, H. 1979 Nonlinear Plasma Dynamics at Laser Irradiation Springer-Verlag, Berlin. Heidelberg p. 24.CrossRefGoogle Scholar
Hora, H. 1980 Atomkemenorgie. 35, 64.Google Scholar
Hora, H. 1980 in Adv. Inertial Conf. Systems. ed. Yamanaka, C. Int. Laser Eng., Osaka Univ. p. 263.Google Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas Wiley-Interscience, New York.Google Scholar
Inglis, D. R. & Teller, E. 1939 Astrophys. J. 90, 439.CrossRefGoogle Scholar
Margenau, H. & Lewis, M. 1959 Rev. Mod. Phys. 31, 569.CrossRefGoogle Scholar
Marr, G. V. 1968 Plasma Spectroscopy. Elsevier Pub. Comp, Amsterdam p. 276.Google Scholar
Merzbacher, E. 1970 Quantum Mechanics. John Wiley & Sons Inc. New York p. 430.Google Scholar
Nakayama, T. & De Witt, H. 1964 J. Quant. Sped. Rad. Trans. 4, 623.CrossRefGoogle Scholar
Neiger, M. & Griem, H. R. 1976 Phys. Rev. A. 14, 291.CrossRefGoogle Scholar
Nicolosi, P. & Volonté, S. 1981 J. Phys. B 14, 585.CrossRefGoogle Scholar
Olsen, H. N. 1961 Phys. Rev. 124, 17031708.CrossRefGoogle Scholar
Olsen, H. N. 1963 J. Quant. Sped. Rad. Trans. 3, 305.CrossRefGoogle Scholar
Pittman, T. H., Voigt, P. & Kelleher, D. E. 1980 Phys. Rev. Lett. 45, 723.CrossRefGoogle Scholar
Rogers, F. J., Graboske, H. C. Jr. & Harwood, D. J. 1970 Phys. Rev. A. 1, 1577.CrossRefGoogle Scholar
Salzmann, D. & Krumbein, A. 1978 J. Appl. Phys. 49, 3229.CrossRefGoogle Scholar
Skupsky, S. 1980 Phys. Rev. A. 21, 1316.CrossRefGoogle Scholar
Spitzer, L. 1939 Phys. Rev. 55, 699.CrossRefGoogle Scholar
Tsuji, A. & Narumi, H. 1970 Prog. Theor. Phys. 44, 1424.CrossRefGoogle Scholar
Unsöld, A. 1947 Z. Astrophys. 24, 355.Google Scholar
Van Zandt, J. R., Adcock, J. C. Jr. & Griem, H. R. 1976 Phys. Rev. A. 14, 2126.CrossRefGoogle Scholar
Volonté, S. 1975 J. Phys. B: Atom. Molec. Phys. 8, 1170.CrossRefGoogle Scholar
Volonté, S. 1978 J. Phys. D: Appl. Phys. 11, 1615.CrossRefGoogle Scholar
Ya'akobi, B. & Goldsmith, S. 1970 Phys. Lett. 31A, 408.CrossRefGoogle Scholar
Ya'akobi, B., Skupsky, S., McCrory, R. L., Hooper, C. F., Deckman, H., Bourke, P. & Soures, J. M. 1980 Phys. Rev. Lett. 44, 1072.CrossRefGoogle Scholar
Yamamoto, K. & Narumi, H. 1980 Prog, in Theor. Phys. 64, 436.CrossRefGoogle Scholar