Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T10:43:02.496Z Has data issue: false hasContentIssue false

Spectral diagnosis of a laser-produced XUV source using a digital camera system with pinhole transmission grating

Published online by Cambridge University Press:  09 March 2009

N. Böwering
Affiliation:
Universität Bielefeld, Fakultät für Physik, 4800 Bielefeld 1, Germany
T. Döhring
Affiliation:
Universität Bielefeld, Fakultät für Physik, 4800 Bielefeld 1, Germany
U. Gärner
Affiliation:
Universität Bielefeld, Fakultät für Physik, 4800 Bielefeld 1, Germany
U. Heinzmann
Affiliation:
Universität Bielefeld, Fakultät für Physik, 4800 Bielefeld 1, Germany

Abstract

For spectral diagnosis, a repetitive laser-produced soft-X-ray source was examined in the range 2–40 nm using a spectrometer containing a pinhole transmission grating, an image converter, and a CCD camera. Via digital recording the detection system provides fast on-line data accumulation with spectral and spatial resolution. With this detector the performance of the light source was studied with respect to spectral emission characteristics, long-term stability, and reproducibility by recording spectra for different solid targets and liquid lead.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carroll, P. K. & Kennedy, E. T. 1981 Contemp. Phys. 22, 61.CrossRefGoogle Scholar
Cavailler, C. et al. 1984 Presented at 16th International Congress on High-Speed Photography and Photonics,Strasbourg.Google Scholar
Cuderman, J. F. & Glibert, K. M. 1975 Rev. Sci. Instrum. 46, 53.CrossRefGoogle Scholar
Day, R. H. et al. 1981 J. Appl. Phys. 52, 6965.CrossRefGoogle Scholar
Donaldson, T. P., Hutcheon, R. J. & Key, M. H. 1973 J. Phys. B 6, 1525.CrossRefGoogle Scholar
Eidmann, K. & Kishimoto, T. 1986 Appl. Phys. Lett. 49, 377.CrossRefGoogle Scholar
Eidmann, K. et al. 1986 Laser Part. Beams 4, 521.CrossRefGoogle Scholar
Fonck, J., Ramsey, A. T. & Yelle, R. V. 1982 Appl. Opt. 21, 2115.CrossRefGoogle Scholar
Gerritsen, H. C. et al. 1986a J. Appl. Phys. 59, 2337.CrossRefGoogle Scholar
Gerritsen, H. C. et al. 1986b J. Phys. E 19, 1040.CrossRefGoogle Scholar
Heckenkamp, Ch. et al. 1981 J. Phys. D 14, L203.CrossRefGoogle Scholar
Ireland, C. L. M. 1974 J. Phys. D 7, L179.CrossRefGoogle Scholar
Jopson, R. M. et al. 1983 Opt. Lett. 8, 265.CrossRefGoogle Scholar
Kishimoto, T. 1985 MPQ Report. No. MPQ 108.Google Scholar
Nicolosi, P., Jannitti, E. & Tondello, G. 1981 Appl. Phys. B 26, 117.CrossRefGoogle Scholar
Popil, R. et al. 1987 Phys. Rev. A 35, 3874.CrossRefGoogle Scholar
Zeldovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press, London).Google Scholar