Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-03T23:34:06.107Z Has data issue: false hasContentIssue false

Some applications of laser-induced shocks on the dynamic behavior of materials

Published online by Cambridge University Press:  09 March 2009

M. Boustie
Affiliation:
Laboratoire de Combustion et de Détonique (U.P.R. du C.N.R.S. no. 9028), E.N.S.M.A Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
T. De Rességuier
Affiliation:
Laboratoire de Combustion et de Détonique (U.P.R. du C.N.R.S. no. 9028), E.N.S.M.A Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
M. Hallouin
Affiliation:
Laboratoire de Combustion et de Détonique (U.P.R. du C.N.R.S. no. 9028), E.N.S.M.A Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
A. Migault
Affiliation:
Laboratoire de Combustion et de Détonique (U.P.R. du C.N.R.S. no. 9028), E.N.S.M.A Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
J.P. Romain
Affiliation:
Laboratoire de Combustion et de Détonique (U.P.R. du C.N.R.S. no. 9028), E.N.S.M.A Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France
D. Zagouri
Affiliation:
Laboratoire de Combustion et de Détonique (U.P.R. du C.N.R.S. no. 9028), E.N.S.M.A Site du Futuroscope, Chasseneuil du Poitou, B.P. 109, 86960 Futuroscope Cédex, France

Abstract

High-power pulsed lasers are used widely nowadays as shock generators. They settle as a complementary technique to the conventional shock generators by the high peak pressure and short duration shocks they deliver. They are used to investigate the feasibility of new industrial processes and to get information on the behavior of matter in specific conditions of extremely high strain rate. In this paper, some studies about typical applications of laser shocks are presented: surface densification of porous materials, spallation in ductile and brittle materials, α-ε phase change in iron, and an estimate of the relaxation time for this transition. Laser shock experiments provide additional data on the dynamic behavior of materials at the nanosecond time scale.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderholm, N.C. 1970 Appl. Phys. Lett. 16, 113.CrossRefGoogle Scholar
Andrews, D.J. 1970 Ph.D. thesis Washington State University.Google Scholar
Barker, L.M. & Hollenbach, R.E. 1974 J. Appl. Phys. 45, 4872.CrossRefGoogle Scholar
Boade, R.R. 1971 Shock-Waves and the Mechanical Properties of Solids, Burke, J.J. and Weiss, V., eds. (Syracuse University Press, Syracuse, NY).Google Scholar
Bobin, J.L. 1971 Phys. Fluids 14, 2341.CrossRefGoogle Scholar
Boustie, M. & Cottet, F. 1991 J. Appl. Phys. 69, 7533.CrossRefGoogle Scholar
Carban-Labaune, C. et al. 1981 Phys. Rev. Lett. 46, 1402.Google Scholar
Carroll, M. & Holt, A.C. 1972 J. Appl. Phys. 43, 759.CrossRefGoogle Scholar
Cauble, R. et al. 1993 Phys. Rev. Lett. 70, 2102.CrossRefGoogle Scholar
Cottet, F. & Boustie, M. 1989 J. Appl. Phys. 66, 9.CrossRefGoogle Scholar
Cottet, F. & Romain, J.P. 1982 In Proc. of the Conf. on Shock Waves in Condensed Matter, Nellis, J. et al. eds. (AIP Press, New York) p. 130.Google Scholar
Curran, D.R. et al. 1977 Phys. Today 47, 46.CrossRefGoogle Scholar
De Rességuier, T. & Cottet, F. 1995 J. Appl. Phys. 77, 3756.CrossRefGoogle Scholar
De Rességuier, T. et al. 1994 DYMAT Journal 1, 1.Google Scholar
Eliezer, S. et al. 1990a J. Appl. Phys. 68, 356.CrossRefGoogle Scholar
Eliezer, S. et al. 1990b J. Appl. Phys. 67, 715.CrossRefGoogle Scholar
Fabbro, R. et al. 1985 Phys. Fluids 28, 1463.CrossRefGoogle Scholar
Fairand, B.P. et al. 1974 Appl. Phys. Lett. 25, 431.CrossRefGoogle Scholar
Fauquignon, C. & Floux, F. 1970 Phys. Fluids 13, 386.CrossRefGoogle Scholar
Forbes, J.W. 1976 Ph.D. thesis Washington State University.Google Scholar
Fortov, V.E. et al. 1991 J. Appl. Phys. 70, 4524.CrossRefGoogle Scholar
Gilath, I. et al. 1988a Appl. Phys. Lett. 52, 1207.CrossRefGoogle Scholar
Gilath, I. et al. 1988b Journal de Physique 9, 191.Google Scholar
Hallouin, M. et al. 1988 Journal de Physique 9, 413.Google Scholar
Hayes, D.B. 1975 J. Appl. Phys. 46, 3438.CrossRefGoogle Scholar
Hermann, W. 1969 J. Appl. Phys. 40, 2490.CrossRefGoogle Scholar
Kanel, G.I. et al. 1995 In Proc. of the A.P.S. Topical Conference on Shock Compression of Condensed Matter (to be published).Google Scholar
Kidder, R.E. 1968 Nucl. Fusion 8, 3.CrossRefGoogle Scholar
Kozlov, Oe.A. 1992 High Pressure Res. 10, 541.Google Scholar
Reaugh, J.E. 1987a Lawrence Livermore Laboratory Report UCRL-95452.Google Scholar
Reaugh, J.E. 1987b J. Appl. Phys. 61, 962.CrossRefGoogle Scholar
Romain, J.P. & Cottet, F. 1980 High Pressure Science & Technology, Vodar, B. and Marteau, P., eds. (Pergamon Press, Oxford) p. 968.Google Scholar
Romain, J.P. & Darquey, P. 1990 J. Appl. Phys. 68, 1926.CrossRefGoogle Scholar
Romain, J.P. & Zagouri, D. 1992 In Proc. of the A.P.S. Topical Conference on Shock Compression of Condensed Matter, Schmidt, S.C. et al. , eds. (Elsevier Science Publishers B.V., Amsterdam) p. 801.Google Scholar
Seaman, L. et al. 1976 J. Appl. Phys. 47, 4814.CrossRefGoogle Scholar
Tollier, L. et al. 1995 In Proc. of the A.P.S. Topical Conference on Shock Compression of Condensed Matter (to be published).Google Scholar
Trainor, R.J. et al. 1978 Lawrence Livermore Laboratory Report UCRL 52562.Google Scholar
Tuler, F.R. & Butcher, B.M. 1968 Int. J. Fract. Mech. 6, 431.CrossRefGoogle Scholar
Van Kessel, C.G.M. & Sigel, R. 1974 Phys. Rev. Lett. 33, 1020.CrossRefGoogle Scholar
Zagouri, D. et al. 1991 Journal de Physique IV, 495.Google Scholar