Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T00:17:11.245Z Has data issue: false hasContentIssue false

Smoothing and stochastic pulsation at high power laser-plasma interaction

Published online by Cambridge University Press:  21 September 2006

HEINRICH HORA
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia

Abstract

Stochastic pulsation of laser-plasma interaction in the range of a few to dozens of picoseconds, due to standing wave produced density ripples, needs more attention than in the past, in view of the recent developments. This is important if nanosecond laser pulses produce a pre-compression that is a thousand times the solid state density of DT for fast ignition as well as for treatment of ps laser interaction. The following is an updated summary of these properties where the laser beam smoothing is essential. The use of smoothing is not only an empirical game with experiments for improving the interaction, but it is necessary to be aware of the mechanisms involved for understanding how the pulsation is overcome, and conclusions can be derived systematically for further improvements and control of the phenomena.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleksandrova, I.V, Brunner, W., Fedotov, S.I., Güther, R., Kalashnikov, M.P., Korn, G., Maksimchuk, A.M., Mikhailov, Y.A., Polze, S., Riekher, R. & Sklizkov, G.V. (1985). Investigation of anomalous generation of omega-0 and 2-omega-0 harmonics of heating radiation in laser plasma corona by means of holographic gratings. Laser Part. Beams 3, 197205.CrossRefGoogle Scholar
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, P.A., Setsuhara, Y., Takagi, M. & Yamanaka, M. (1991). High-density compression experiments at Ile, Osaka. Laser Part. Beams 9, 193207.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Parys, P., Wolowski, J. & Hora, H. (2005). Laser-driven generation of high-current ion beams using skin-layer ponderomotive acceleration. Laser Part. Beams 23, 401409.Google Scholar
Bibeau, C., Beach, R.J., Bayramian, A., Chanteloup, J.C., Ebbers, C.A., Emmanujel, M.A., Orth, C.D., Rothenberg, J.E., Schaffers, K.I., Skidmore, K.I., Sutton, S.B., Zapata, L.E., Payne, S.A. & Powell, H.T. (2000). Mercury and beyond: Diode-pumped solid-state lasers for inertial fusion energy. In High Power Lasers in Energy Engineering (Mima, K., Kulcinski, G.L. and Hogan, W., Eds.), pp. 5774. Belingham, WA: SPIE Press.CrossRef
Blue, B.E., Weber, S.V., Glendinning, S.G., Lanier, N.E., Woods, D.T., Bono, M.J., Dixit, S.N., Haynam, C.A., Holder, J.P., Kalantar, D.H., Macgowan, B.J., Nikitin, A.J., Rekow, V.V., Van Wonterghem, B.M., Moses, E.I., Stry, P.E., Wilde, B.H., Hsing, W.W. & Robey, H.F. (2005). Experimental investigation of high-mach-number 3D hydrodynamic jets at the National Ignition Facility. Phys. Rev. Lett. 94, 095005.CrossRefGoogle Scholar
Boreham, B.W., Hora, H., Aydin, M., Eliezer, S., Goldsworthy, M.P., Min, G., Gahatak, A.K., Lalousis, P., Stening, R.J., Szichman, H., Lutherdavies, B., Baldwin, K.G.H., Maddever, R.A.M. & Rode, A,V. (1997). Beam smoothing and temporal effects: Optimized preparation of laser beams for direct-drive inertial confinement fusion. Laser Part. Beams 15, 277295.CrossRefGoogle Scholar
Campbell, E.M., Holmes, N.C., Libby, S.B., Remington, B.A. & Teller, E. (1997). The evolution of high-energy-density physics: From nuclear testing to the super lasers. Laser Part. Beams 15, 607626.CrossRefGoogle Scholar
Chiao, Ry., Garmire, E. & Townes, C.H. (1964). Self-trapping of optical beams . Phys. Rev. Lett. 13, 479.CrossRefGoogle Scholar
Deng, Xi-Ming & Wenyan, Yu. (1984). Advances in Inertial Confinement Fusion (Yamanaka, C., Ed.), p. 66. Osaka: Institute of Laser Engineering.
Eliezer, S. & Hora, H. (1989). Double-layers in laser-produced. Phys. Lett. 172, 339407.Google Scholar
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Giulietti, A., Cope, S., Afshar-Rad, T., Desselberger, M., Willi, O., Danson, C. & Giulietti, D. (1991). Experimental study of beam-plasma instabilities in long scale length laser produced plasmas. In Laser Interaction and Related Plasma Phenomena (Hora, H. and Miley, G.H., eds.), Vol. 9, pp. 261285. New York: Plenum.CrossRef
Glowacz, S., Hora, H., Badziak, J., Jablonski, S., Cang, Y. & Osman, F. (2006). Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser Part. Beams 24, 1525.Google Scholar
Goldsworthy, M.P., Hora, H. & Stening, R.J. (1990). Double-layer effects causing nearly uniform striated 2nd harmonic emission from a laser irradiated plasma corona. Laser Part. Beams 8, 3349.CrossRefGoogle Scholar
Haseroth, H. & Hora, H. (1996). Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources. Laser Part. Beams 14, 393438.CrossRefGoogle Scholar
Häuser, T., Scheid, W. & Hora, H. (1992). Theory of ions emitted from a plasma by relativistic self-focusing of laser-beams. Phys. Rev. A 45, 12781281.CrossRefGoogle Scholar
Hoffmann, D.D.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Honig, R.E. (1963). Laser-induced emission of electrons and positive ions from metals and semiconductors. Appl. Phys. Lett. 3, 811.CrossRefGoogle Scholar
Hora, H. (1965). A Method of Effecting Correction in an Optical System. U.S. Patent No. 3.362.85.
Hora, H. (1969a). Nonlinear confining and deconfining forces associated with interaction of laser radiation with plasma. Phys. Fluids 12, 182188Google Scholar
Hora, H. (1969b). Self-focusing of laser beams in a plasma by ponderomotive forces. Z. Physik 226, 156.Google Scholar
Hora, H. (1975a). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.Google Scholar
Hora, H. (1975b). Laser Fusion and Nuclear Energy, p. 454. New York: Plenum.
Hora, H. (1985a). The transient electrodynamic forces at laser plasma interaction. Phys. Fluids 28, 37053706.Google Scholar
Hora, H. (1985b). Nonlinear confining and deconfining forces associated with interacton of laser radiation with plasma. Phys. Fluids 28, 3706.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg, Germany: Springer.
Hora, H. (2000). Laser Plasma Physics: Forces and the Nonlinearity Principle. Bellingham, WA: SPIE-Books.
Hora, H. (2005). Difference between relativistic petawatt-picosecond laser-plasma interaction and subrelativistic plasma-block generation. Laser Part. Beams 23, 441451.Google Scholar
Hora, H. & Ray, P.S. (1978). Increased nuclear fusion yields of inertially confined DT plasma due to reheat. J. Phys. Sci. 33, 890894.Google Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers produced by nonlinear forces in a laser-produced plasma. Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Hora, H. & Ghatak, A.K. (1985). New electrostatic resonance driven by laser-radiation at perpendicular incidence in superdense plasmas. Phys. Rev. A 31, 34733476.CrossRefGoogle Scholar
Hora, H. & Aydin, M. (1992). Suppression of stochastic pulsation in laser plasma interaction by smoothing methods. Phys. Rev. A 45, 61236125.CrossRefGoogle Scholar
Hora, H., Azechi, H., Kitagawa, Y., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Takabe, H., Yamanaka, C., Yamanaka, M. & Yamanaka, T. (1998). Measured laser fusion gains reproduced by self-similar volume compression and volume ignition for NIF conditions. J. Plasma Phys. 60, 743760.CrossRefGoogle Scholar
Hora, H. & Aydin, M. (1999). Improved use of big laser systems for inertial fusion energy. Laser Part. Beams 17, 209215.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Lasa, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Optics Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H., Badziak, J., Glowacz, S., Jablonski, S., Skladanowski, Z., Osman, F., Cang, Y., Zhang, J., Miley, G.H., Peng, H.S., He, X.T., Zhang, W.Y., Rohlena, K., Ullschmied, J. & Jungwirth, K. (2005). Fusion energy from plasma block ignition. Laser Part. Beams 23, 423432.CrossRefGoogle Scholar
Hora, H., Stening, R.J., Aydin, M., Rowlands, T.P., Osman, F., Evans, P., Castillo, R., Collins, M., Stait-Gardener, T. & Chan, W.-K. (2000). Suppression of pulsation by laser beam smoothing and ICF with volume ignition. Proc. 18th IAEA Fusion Energy Conference. Vienna: IAEA Press.
Jackel, S., Perry, B. & Lubin, M. (1976). Dynamics of laser-produced plasmas through time-resolved observations of 2omega0 and 3/2omega0 harmonic light emissions. Phys. Rev. Lett. 37, 9598.CrossRefGoogle Scholar
Kasperczyk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Macek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasma 13, 062704/1-8.Google Scholar
Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett. 53, 10571060.CrossRefGoogle Scholar
Korobkin, V.V. & Alcock, A.J. (1968). Self-focusing effects associated with laser-induced air breakdown. Phys. Rev. Lett. 21, 14331436.CrossRefGoogle Scholar
Kuroda, H., Suzuki, M., Ganeev, R., Zhang, J., Baba, M., Ozaki, T., Wei, Z.Y. & Zhang, H. (2005). Advanced 20 TW Ti : S laser system for X-ray laser and coherent XUV generation irradiated by ultra-high intensities. Laser Part. Beams 23, 183186.Google Scholar
Kzrala, G.A., Delamater, N., Wilson, D., Guzik, J., Haynes, D., Gunderson, M., Klare, K., Watt, R.W., Wood, W.M. & Varnum, W. (2005). Direct drive double shell target implosion hydrodynamics on Omega. Laser Part. Beams 23, 187192.Google Scholar
Labaune, C., Baton, S., Jalinaud, T., Baldis, H.A. & Pesme, D. (1992). Filamentation in long scale length plasmas: Experimental-evidence and effects of laser spatial incoherence. Phys. Fluids 4, 22242231.CrossRefGoogle Scholar
Lackner, K.S., Colgate, S.A., Johnson, N.L., Kirkpatrick, R.C., Menikoff, R. & Petschek, A.G. (1994). Equilibrium ignition for ICF capsules. In Laser Interaction and Related Plasma Phenomena (Miley, G.H., Ed.), pp. 356361. New York: American Institute of Physics.CrossRef
Lehmberg, R.H. & Obenschain, S.P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion-targets. Opt. Commun. 46, 2731.CrossRefGoogle Scholar
Linlor, W.I. (1963). Ion energies produced by laser giant pulse. Appl. Phys. Lett. 3, 210211.CrossRefGoogle Scholar
Maddever, R.A.M., Lutherdavies, B. & Dragila, R. (1990). Pulsation of 1-omega-0 and 2-omega-0 emission from laser-produced plasmas .1. Experiment. Phys. Rev. A 41, 21542164.CrossRefGoogle Scholar
Maddever, R.A.M. (1988). Temporal and spectral characteristics of the fundamental and second harmonic emission from laser-produced plasmas. Ph.D. Thesis. Canberra: Australian National University.
Miley, G.H., Hora, H., Osman, F., Evans, P. & Toups, P. (2005). Single event laser fusion using ns-MJ laser pulses. Laser Part. Beams 23, 453460.CrossRefGoogle Scholar
Obenschain, S.P., Pawley, C.J., Mostovych, A.N., Stamper, J.A., Gardner, J.H., Schmitt, A.J. & Bodner, S.E. (1989). Reduction of Raman-scattering in a plasma to convective levels using induced spatial incoherence. Phys. Rev. Lett. 62, 768771.CrossRefGoogle Scholar
Osman, F., Castillo, R. & Hora, H. (1999). Relativistic and ponderomotive self-focusing at laser plasma interaction. J. Plasma Phys. 61, 263273.CrossRefGoogle Scholar
Pant, H.C., Eidmann, K., Sachsenmaier, P. & Sigel, R. (1976). Threshold of 2-omega-pe instability in a laser-produced plasma. Opt. Commun. 16, 396398.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, B., Blayevic, A., Clarke, R., Cobble, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neelz, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Rowlands, T. (1990). The Gauge and Lorentz invariance of the nonlinear ponderomotive 4-force plasma. Phys. Contr. Fusion 32, 297302.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the HELIX laser system at GSI. Laser Part. Beams 23, 503512.Google Scholar
Schlüter, A. (1950). Dynamik des plasmas-i - grundgleichungen, plasma in gekreuzten feldern. J. Phys. Sci. 5, 7278.Google Scholar
Skupsky, S. & Lee, K. (1983). Uniformity of energy deposition for laser driven fusion. J. Appl. Phys. 54, 36623671.CrossRefGoogle Scholar
Soures, J.M., McCrory, R.L., Vernon, C.P., Babushki, A., Bahr, R.E., Boehli, T.R., Boni, R., Bradlay, D.K., Brown, D.L., Craxton, R.S., Delettrez, J.A., Donaldson, W.R., Epstein, R., Jaanimagi, P.A., Jacobs, S.D., Kearney, K., Keck, R.L., Kelly, J.H., Kessler, T.J., Kremes, R.L., Knauaer, J.P., Kumpan, S.A., Letzring, S.A., Lonobile, D.J., Loucks, S.J., Lund, L.D., Marshall, F.J., Mckenty, P.W., Meyerhofer, D.D., Morse, S.F.B., Okishev, A., Papernov, S., Pien, G., Seka, W., Short, R., Shoup Iii, M.J., Skeldon, S., Skoupski, S., Schmid, A.W. Smith, D.J., Swmales, S., Wittman, M., &Yaakobi, B. (1996). Direct-drive laser-fusion experiments with OMEGA, 60-beam, >40 kJ, ultraviolet laser system. Phys. Plasma 3, 21082112.CrossRefGoogle Scholar