Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T22:29:29.207Z Has data issue: false hasContentIssue false

Simulation of femtosecond laser absorption by metallic targets and their thermal evolution

Published online by Cambridge University Press:  21 June 2017

A. Suslova*
Affiliation:
Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA
A. Hassanein
Affiliation:
Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA
*
Address correspondence and reprint requests to: A. Suslova, Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA. E-mail: [email protected]

Abstract

The interaction of femtosecond laser with initially cold solid metallic targets (Al, Au, Cu, Mo, Ni) was investigated in a wide range of laser intensity with focus on the laser energy absorption efficiency. Our developed simulation code (FEMTO-2D) is based on two-temperature model in two-dimensional configuration, where the temperature-dependent optical and thermodynamic properties of the target material were considered. The role of the collisional processes in the ultrashort pulse laser–matter interaction has been carefully analyzed throughout the process of material transition from the cold solid state into the dense plasma state during the pulse. We have compared the simulation predictions of the laser pulse absorption with temperature-dependent reflectivity and optical penetration depth to the case of constant optical parameters. By considering the effect of the temporal and spatial (radial) distribution of the laser intensity on the light absorption efficiency, we obtained a good agreement between the simulated results and available experimental data. The appropriate model for temperature-dependent optical parameters defining the laser absorption efficiency will allow more accurate simulation of the target thermal response in the applications where it is critical, such as prediction of the material damage threshold, laser ablation threshold, and the ablation profile.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anisimov, S.I., Kapeliovich, B.L. & Perelman, T.L. (1974). Electron emission from metal surfaces exposed to ultrashort laser pulses. J. Exp. Theor. Phys. 66, 776781.Google Scholar
Ashcroft, N.W. & Mermin, N.D. (1976). Solid State Physics. New York: Holt, Rinehart and Winston.Google Scholar
Brown, M.S. & Arnold, C.B. (2010). Fundamentals of laser-material interaction and application to multiscale surface modification. In Laser Precision Microfabrication (Sugioka, K., Meunier, M. & Pique, A., Eds), pp. 91120. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Callen, J.D. (2006). Coulomb collisions. In Fundamentals of Plasma Physics, available at: http://homepages.cae.wisc.edu/~callen/.Google Scholar
Chase, M.W. & National Institute of Standards and Technology (U.S.) (1998). NIST-JANAF Thermochemical Tables. 4th edn. New York: American Chemical Society.Google Scholar
Chen, A.M., Jiang, Y.F., Sui, L.Z., Ding, D.J., Liu, H. & Jin, M.X. (2011 a). Thermal behavior of thin metal films irradiated by shaped femtosecond pulse sequences laser. Opt. Commun. 284, 21922197.CrossRefGoogle Scholar
Chen, A.M., Jiang, Y.F., Sui, L.Z., Liu, H., Jin, M.X. & Ding, D.J. (2011 b). Thermal analysis of double-layer metal films during femtosecond laser heating. J. Opt. 13, 55503.CrossRefGoogle Scholar
Chen, A.M., Xu, H.F., Jiang, Y.F., Sui, L.Z., Ding, D.J., Liu, H. & Jin, M.X. (2010). Modeling of femtosecond laser damage threshold on the two-layer metal films. Appl. Surf. Sci. 257, 16781683.CrossRefGoogle Scholar
Chen, J.K. & Beraun, J.E. (2003). Modelling of ultrashort laser ablation of gold films in vacuum. J. Opt. A: Pure Appl. Opt. 5, 168173.CrossRefGoogle Scholar
Chen, J.K., Latham, W.P. & Beraun, J.E. (2005). The role of electron–phonon coupling in ultrafast laser heating. J. Laser Appl. 17, 63.CrossRefGoogle Scholar
Chung, H.-K., Chen, M.H., Morgan, W.L., Ralchenko, Y. & Lee, R.W. (2005). FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Phys. 1, 312.CrossRefGoogle Scholar
Du, G., Chen, F., Yang, Q., Si, J. & Hou, X. (2010). Ultrafast temperature relaxation evolution in Au film under femtosecond laser pulses irradiation. Opt. Commun. 283, 18691872.CrossRefGoogle Scholar
Fisher, D., Fraenkel, M., Henis, Z., Moshe, E. & Eliezer, S. (2001). Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum. Phys. Rev. E 65, 6409.CrossRefGoogle ScholarPubMed
Fisher, D., Fraenkel, M., Zinamon, Z., Henis, Z., Moshe, E., Horovitz, Y. & Eliezer, S. (2005). Intraband and interband absorption of femtosecond laser pulses in copper. Laser Part. Beams 23, 391393.CrossRefGoogle Scholar
Fourment, C., Deneuville, F., Descamps, D., Dorchies, F., Petit, S., Peyrusse, O. & Recoules, V. (2014). Experimental determination of temperature-dependent electron-electron collision frequency in isochorically heated warm dense gold. Phys. Rev. B 89, 161110.CrossRefGoogle Scholar
Gamaly, E. (2011). Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications. Singapore: World Scientific.CrossRefGoogle Scholar
Hermann, J., Benfarah, M., Bruneau, S., Axente, E., Coustillier, G., Itina, T., Guillemoles, J.-F. & Alloncle, P. (2006). Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. J. Phys. D Appl. Phys. 39, 453460.CrossRefGoogle Scholar
Hughes, A.J., Jones, D. & Lettington, A.H. (1969). Calculation of the optical properties of aluminium. J. Phys. C: Solid State Phys. 2, 313.CrossRefGoogle Scholar
Ibrahim, W.M.G., Elsayed-Ali, H.E., Shinn, M.D. & Bonner, C.E. (2003). Femtosecond damage threshold of multilayer metal films. Proc. SPIE 4932, Seventh International Workshop on Laser Beam & Opt. Charact., p. 55 (Boulder, Colorado).Google Scholar
Jiang, L. & Tsai, H.-L. (2005). Improved two-temperature model and its application in ultrashort laser heating of metal films. J. Heat Transf. 127, 1167.CrossRefGoogle Scholar
Kirkwood, S.E., Tsui, Y.Y., Fedosejevs, R., Brantov, A.V. & Bychenkov, V.Y. (2009). Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets. Phys. Rev. B 79, 144120.CrossRefGoogle Scholar
Kittel, C. (2005). Introduction to Solid State Physics. New York: Wiley.Google Scholar
Komashko, A.M. (2003). Laser–Material Interaction of Powerful Ultrashort Laser Pulses. PhD Thesis. University of California, Davis.CrossRefGoogle Scholar
Lee, J.B., Kang, K. & Lee, S.H. (2011). Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers. Mater. Trans. 52, 547553.CrossRefGoogle Scholar
Lide, D. (2003). CRC Handbook of Chemistry and Physics. 84th edn. London: CRC Press.Google Scholar
Lin, Z. (2007). Temperature dependences of the electron–phonon coupling, electron heat capacity and thermal conductivity in Ni under femtosecond laser irradiation. Appl. Surf. Sci. 253, 62956300.CrossRefGoogle Scholar
Lin, Z., Zhigilei, L.V. & Celli, V. (2008). Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B 77, 75133.CrossRefGoogle Scholar
Liu, K.-C. (2007). Analysis of thermal behavior in multi-layer metal thin films based on hyperbolic two-step model. Int. J. Heat Mass Transf. 50, 13971407.CrossRefGoogle Scholar
Loboda, P.A., Smirnov, N.A., Shadrin, A.A. & Karlykhanov, N.G. (2011). Simulation of absorption of femtosecond laser pulses in solid-density copper. High Energy Density Phys. 7, 361.CrossRefGoogle Scholar
Ordal, M.A., Bell, R.J., Alexander, R.W., Long, L.L. & Querry, M. R. (1987) Optical properties of Au, Ni, and Pb at submillimeter wavelengths. Appl. Opt. 26, 744.CrossRefGoogle ScholarPubMed
Ordal, M.A., Bell, R.J., Alexander, R.W., Newquist, L.A. & Querry, M.R. (1988). Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. Appl. Opt. 27, 1203.CrossRefGoogle Scholar
Pisonero, J., Koch, J., Wälle, M., Hartung, W., Spencer, N.D. & Günther, D. (2007). Capabilities of femtosecond laser ablation inductively coupled plasma mass spectrometry for depth profiling of thin metal coatings. Anal. Chem. 79, 23252333.CrossRefGoogle ScholarPubMed
Polek, M. (2015). Effects of femtosecond laser irradiation of metallic and dielectric materials in the low-to-high fluence regimes. PhD Thesis. Purdue University.Google Scholar
Price, D.F., More, R.M., Walling, R.S., Guethlein, G., Shepherd, R.L., Stewart, R.E. & White, W.E. (1995). Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1–1000 eV. Phys. Rev. Lett. 75, 252255.CrossRefGoogle ScholarPubMed
Qiu, T.Q. & Tien, C.L. (1993). Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transf. 115, 835.CrossRefGoogle Scholar
Qiu, T.Q. & Tien, C.L. (1994). Femtosecond laser heating of multi-layer metals – I. Analysis. Int. J. Heat Mass Transf. 37, 27892797.CrossRefGoogle Scholar
Rakić, A.D., Djurišić, A.B., Elazar, J.M. & Majewski, M.L. (1998). Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271.CrossRefGoogle ScholarPubMed
Rethfeld, B., Kaiser, A., Vicanek, M. & Simon, G. (2002). Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303.CrossRefGoogle Scholar
Samsonov, G.V. (1968). Handbook of the Physicochemical Properties of the Elements. Boston, MA: Springer US.CrossRefGoogle Scholar
Shternin, P.S. & Yakovlev, D.G. (2006). Electron thermal conductivity owing to collisions between degenerate electrons. Phys. Rev. D 74, 43004.CrossRefGoogle Scholar
Sigman, M.E. (2010). Application of laser-induced breakdown spectroscopy to forensic science: analysis of paint and glass samples. Final Technical Report, Award No: 2004-IJ-CX-K031.Google Scholar
Spitzer, L. & Härm, R. (1953). Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977981.CrossRefGoogle Scholar
Waldecker, L., Bertoni, R., Ernstorfer, R. & Vorberger, J. (2016). Electron-phonon coupling and energy flow in a simple metal beyond the two-temperature approximation. Phys. Rev. X 6, 21003.Google Scholar
Wang, H., Dai, W. & Melnik, R. (2006). A finite difference method for studying thermal deformation in a double-layered thin film exposed to ultrashort pulsed lasers. Int. J. Therm. Sci. 45, 11791196.CrossRefGoogle Scholar
Wang, S.Y., Ren, Y., Cheng, C.W., Chen, J.K. & Tzou, D.Y. (2013). Micromachining of copper by femtosecond laser pulses. Appl. Surf. Sci. 265, 302308.CrossRefGoogle Scholar
Watling, R.J., Lynch, B.F. & Herring, D. (1997). Use of laser ablation inductively coupled plasma mass spectrometry for fingerprinting scene of crime evidence. J. Anal. At. Spectrosc. 12, 195203.CrossRefGoogle Scholar
Wellershoff, S.-S., Hohlfeld, J., Güdde, J. & Matthias, E. (1999). The role of electron–phonon coupling in femtosecond laser damage of metals. Appl. Phys. A 69, 99107.Google Scholar
Zhang, B., He, M., Hang, W. & Huang, B. (2013). Minimizing matrix effect by femtosecond laser ablation and ionization in elemental determination. Anal. Chem. 85, 45074511.CrossRefGoogle ScholarPubMed
Zhang, J., Chen, Y., Hu, M. & Chen, X. (2015). An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum. J. Appl. Phys. 117, 63104.CrossRefGoogle Scholar
Zhao, X. (2014). Ultrashort laser pulse–matter interaction: Fundamentals and early stage plasma dynamics. PhD Thesis. Purdue University.Google Scholar