Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:20:44.924Z Has data issue: false hasContentIssue false

Secondary nuclear fusion reactions as evidence of electron degeneracy in highly compressed fusion fuel

Published online by Cambridge University Press:  09 March 2009

Y. Setsuhara
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
H. Azechi
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
N. Miyanaga
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
H. Furukawa
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
R. Ishizaki
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
K. Nishihara
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
M. Katayama
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
A. Nishiguchi
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
K. Mima
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan
S. Nakai
Affiliation:
Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565, Japan

Abstract

Recent direct-drive implosion experiments on the GEKKO XII laser with plastic hollow shell targets demonstrated compressed densities of ∼600 g/cm3 (∼600 times liquid density) at a temperature of ∼0.3 keV. The highly compressed core plasmas are indicated to be strongly coupled (average Coulomb energy/thermal energy ≈5) and partially degenerate (thermal energy/Fermi energy ≈0.3). The diagnostic method based on the secondary nuclear fusion reactions is presented to prove the electron degeneracy in the highly compressed core plasma. The yield ratio of the secondary DT neutrons to the primary DD neutrons in such highly compressed core plasmas was calculated with inclusion of the strong Coulomb-coupling effects, the varied degrees of the electron degeneracy, and the electronic shielding effects. It was found in our calculations that there is a significant dependence of the yield ratio on the compressed core density. For the plastic targets at the electron temperature of ∼0.3 keV, the yield ratio increases from 9 × 10−4 to 8 × 10−3 for densities from 10 to 1000 g/cm3. The preliminary experiments using deuterated plastic hollow shell targets suggested that the enhancement of the yield ratio provided evidence of the electron degeneracy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azechi, H. et al. 1986 Appl. Phys. Lett. 49, 555.CrossRefGoogle Scholar
Azechi, H. et al. 1991 Laser Part. Beams 9 (2).Google Scholar
Basov, N.G. et al. 1986 Sov. J. Plasma Phys. 12, 526.Google Scholar
Baus, M. & Hansen, J. P. 1980 Phys. Rep. 59, 1.CrossRefGoogle Scholar
Blue, T. E. & Harris, D. B. 1981 Nucl. Sci. Eng. 77, 463.CrossRefGoogle Scholar
Brysk, H. 1973 Plasma Phys. 15, 611.Google Scholar
Cable, M. D. et al. 1986 Bull. Am. Phys. Soc. 31, 1461.Google Scholar
Cable, M. D. & Hatchett, S. P. 1987 J. Appl. Phys. 62, 2233.CrossRefGoogle Scholar
Conner, J. P. et al. 1952 Phys. Rev. 88, 468.Google Scholar
Gamalii, E. G. et al. 1975 JETP Lett. 21, 70.Google Scholar
Gouedard, C. & Deutsch, C. 1978 J. Math. Phys. 19, 32.Google Scholar
Harris, D. B. & Miley, G. H. 1988 Nucl. Fusion 28, 25.CrossRefGoogle Scholar
Ichimaru, S. 1982 Rev. Mod. Phys. 54, 1017.CrossRefGoogle Scholar
Ichimaru, S. et al. 1985 Phys. Rev. A 32, 1768.Google Scholar
Kato, Y. et al. 1984 Phys. Rev. Lett. 53, 1057.CrossRefGoogle Scholar
Khanna, F. C. & Glyde, H. R. 1976 Can. J. Phys. 54, 648.CrossRefGoogle Scholar
Kryuchenkov, V. B. et al. 1976 Sov. J. Quantum Electron. 6, 730.CrossRefGoogle Scholar
Lane, S. M. et al. 1980 Appl. Phys. Lett. 37, 600.CrossRefGoogle Scholar
Lindhard, J. 1954 K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28 (8), 1.Google Scholar
Nakai, S. 1989 Bull. Am. Phys. Soc. 34, 2040.Google Scholar
Nakaishi, H. et al. 1989 Appl. Phys. Lett. 55, 2072.CrossRefGoogle Scholar
Peres, A. 1979 J. Appl. Phys. 50, 5569.Google Scholar
Salpeter, E. E. 1954 Aust. J. Phys. 7, 373.CrossRefGoogle Scholar
Shepherd, R. et al. 1987 Bull. Am. Phys. Soc. 32, 1818.Google Scholar
Slaughter, D. R. 1989 Rev. Sci. Instrum. 60, 552.CrossRefGoogle Scholar
Stapf, R. O. et al. 1987 Nucl. Instrum. Methods Phys. Res. A254, 135.Google Scholar
Yan, X.-Z. et al. 1985 Phys. Rev. A 32, 1785.CrossRefGoogle Scholar