Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T08:08:58.944Z Has data issue: false hasContentIssue false

Sculpted pulsed indium atomic beams via selective laser ablation of thin film

Published online by Cambridge University Press:  28 November 2006

KAMLESH ALTI
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India
ALIKA KHARE
Affiliation:
Department of Physics, Indian Institute of Technology Guwahati, Guwahati, India

Abstract

We present a novel experiment for the generation of sculpted pulsed indium atomic beams of regular arrays in one and two-dimensions via rear side ablation of indium by two and four beams interference pattern using second harmonic of high power Nd: YAG laser under high vacuum (10−5 Torr).

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alti, K. & Khare, A. (2006a). Low-energy low-divergence pulsed indium atomic beam by laser ablation. Laser Part. Beams 24, 4753.Google Scholar
Alti, K. & Khare, A. (2006b). Simulated lithographic patterns for periodic arrays of atomic beams focused with a single atomic lens. Internat. J Nanosci. 5, 145156.Google Scholar
Anan'in, O.B., Bykovskii, Yu.A., Eremin, Yu.V., Stupitskii, E.L., Novikov, I.K. & Frolov, S.P. (1991). Investigation of laser plasma expansion in an ambient gas by high-speed photography. Sov. J. Quan. Electr. 21, 787789.CrossRefGoogle Scholar
Breton, C., de Michelis, C., Hecq, W. & Mattioli, M. (1980). Low energy neutral beam production by laser vaporization of metals. Rev. Phys. Appl. 15, 11931200.CrossRefGoogle Scholar
Bruneau, S., Hermann, J., Dumitru, G., Sentis, M. & Axente, E. (2005). Ultra-fast laser ablation applied to deep-drilling of metals. Appl. Sur. Sci. 248, 299303.CrossRefGoogle Scholar
Chae, H. & Park, S.M. (1997). Expansion dynamics of laser-generated Si atomic beam. Bull. Korean Chem. Soc. 18, 448450.Google Scholar
Chirsey, D.B. & Hubler, G.K. (1994). Pulsed Laser Deposition of Thin Films. New York: John Wiley & Sons.
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.CrossRefGoogle Scholar
Gamaly, E.G., Luther-Davies, B., Kolev, V.Z., Madsen, N.R., Duering, M. & Rode, A.V. (2005). Ablation of metals with picosecond laser pulses: Evidence of long-lived non-equilibrium surface states. Laser Part. Beams 23, 167176.CrossRefGoogle Scholar
Kadar-Kallen, M.A. & Bonin, K.D. (1994). Generation of dense, pulsed beams of refractory metal atoms using two-stage laser ablation. Appl. Phys. Lett. 64, 14361438.CrossRefGoogle Scholar
Khare, A., Alti, K., Das, S., Patra, A.S. & Sharma, M. (2004). Application of laser matter interaction for generation of small sized materials. J. Rad. Phys. Chem. 70, 553558.CrossRefGoogle Scholar
Mishra, A. & Thareja, R.K. (1999). Investigation of laser ablated plumes using fast photography. IEEE Trans. Plasma Sci. 27, 15531558.CrossRefGoogle Scholar
Nakata, Y., Okada, T. & Maeda, M. (2002). Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams. Appl. Phys. Lett. 81, 42394241.CrossRefGoogle Scholar
Nakata, Y., Okada, T. & Maeda, M. (2004). Lithographic laser ablation using femtosecond laser. Appl. Phys. A 79, 14811483.CrossRefGoogle Scholar
Patra, A.S. & Khare, A. (2006). Interferometric array generation. Optics Laser Techn. 38, 3745.CrossRefGoogle Scholar
Trusso, S., Barletta, E., Barreca, F., Fazio, E. & Neri, F. (2005). Time resolved imaging studies of the plasma produced by laser ablation of silicon in O-2/Ar atmosphere. Laser Part. Beams 23, 149153.Google Scholar
Wieger, V., Strassl, M. & Wintner, E. (2006). Pico- and microsecond laser ablation of dental restorative materials. Laser Part. Beams 24, 4145.Google Scholar
Weaver, I. & Lewis, C.L.S. (1996). Polar distribution of ablated atomic materials during the pulsed laser deposition of Cu in vacuum: Dependence on focused laser spot size and power density. J. Appl. Phys. 79, 72167222.CrossRefGoogle Scholar