Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T02:19:42.321Z Has data issue: false hasContentIssue false

Scaling laws for the effective charge of heavy ions penetrating gas or plasma targets

Published online by Cambridge University Press:  09 March 2009

Th. Peter
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, Germany

Abstract

Until now a theoretical derivation of scaling laws for the effective charge Zeff of heavy ions penetrating matter has been lacking, although for cold gaseous targets there are well-established empirical relations of the form Zeff/Zp = f (up/ZpγZtδ), where vp and Zp are, respectively, the velocity and nuclear charge of the projectile ion, Zt, is the nuclear charge of the target atoms, and γ and δ are the scaling exponents. We show that the scaling exponents may be derived from an investigation of loss and capture rates. The treatment is based on the Bohr-Lamb criterion. This very crude criterion yields γ = 2/3. Our analysis allows the formulation of a modified criterion, yielding γ = 0.528 for cold gas, which deviates by only 2% from the often-used empirical Betz formula. The dependence on Zt, in cold gas is oscillatory and cannot be described by a simple exponent δ. The treatment is also applied to a fully ionized plasma, resulting in Zerf/Zp = f (upZt0.27/Zp1.39).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions (NBS, Washington, DC).Google Scholar
Bell, G. I. 1953 Phys. Rev. 90, 548.CrossRefGoogle Scholar
Betz, H.-D. 1972 Rev. Mod. Phys. 44, 465.CrossRefGoogle Scholar
Betz, H.-D. 1983 “Heavy Ion Charge States,“ In Appl. At. Coll. Phys., Datz, S., ed. (Academic Press, New York) Vol. 4, p. 1.Google Scholar
Bohr, N. 1940 Phys. Rev. 58, 654.CrossRefGoogle Scholar
Bohr, N. 1941 Phys. Rev. 59, 270.CrossRefGoogle Scholar
Bohr, N. 1948 K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 18, 1.Google Scholar
Bohr, N. & Lindhard, J. 1954 K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 1.Google Scholar
Brinkmann, H. C. & Kramers, H. A. 1930 Proc. K. Ned. Akad. Wet. 33, 973.Google Scholar
Crothers, D. S. F. & Todd, N. R. 1980 J. Phys. B 13, 2277.CrossRefGoogle Scholar
Dmitriev, I. S. & Nikolaev, V. S. 1964 Zh. Eksp. Teor. Fit. 47, 615 [Sov. Phys.-JETP 17, 409].Google Scholar
Eichler, J. K. M. & Chan, F. T. 1979 Phys. Rev. A 20, 104.CrossRefGoogle Scholar
Geissel, H. et al. 1983 Phys. Lett. 99A, 77.CrossRefGoogle Scholar
Gryzinski, M. 1965 Phys. Rev. 138, A3O5, A322, A336.Google Scholar
Lamb, W. E. 1940 Phys. Rev. 58, 696.CrossRefGoogle Scholar
May, R. M. 1964 Phys. Rev. 136, A669.CrossRefGoogle Scholar
McGuire, J. H. & Richard, P. 1973 Phys. Rev. A 8, 1374.CrossRefGoogle Scholar
Nikolaev, V. S. & Dmitriev, I. S. 1968 Phys. Lett. 28A, 277.CrossRefGoogle Scholar
Oppenheimer, J. R. 1928 Phys. Rev. 31, 349.CrossRefGoogle Scholar
Peter, Th. & Meyer-ter-Vehn, J. 1989 “Nonlinear stopping power of heavy ions in plasma.“ Report of the Gesellschaft für Schwerionenforschung Darmstadt (FRG) GSI-89–21, submitted Phys. Rev. A.Google Scholar
Seaton, M. J. 1959 Mon. Not. R. Astron. Soc. 119, 81.CrossRefGoogle Scholar
Shima, K. et al. 1989 Phys. Rev. A 39, 4316.CrossRefGoogle Scholar
Slater, J. C. 1930 Phys. Rev. 36, 57.CrossRefGoogle Scholar
Wittkower, A. B. & Betz, H.-D. 1973 At. Data 5, 113; Phys. Rev. A 7, 159.CrossRefGoogle Scholar