Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T22:38:56.714Z Has data issue: false hasContentIssue false

A review on equations of state at high densities based on Thomas–Fermi and related models

Published online by Cambridge University Press:  09 March 2009

Ajoy K. Ghatak
Affiliation:
Department of Physics, Indian Institute of Technology, New Delhi 110016, India.
Shalom Eliezer
Affiliation:
Plasma Physics Department, SOREQ Nuclear Research Center, Israel Atomic Energy Commission, Yavne 70600, Israel

Extract

In recent years there has been considerable effort to understand the equation of state (EOS) of materials, particularly at high pressures and temperatures. Such studies have direct applications in the laser fusion problem where materials are subjected to radiation induced shock waves which compress material to over 100 times the normal density at temperatures up to 100 million degrees (e.g. Hora 1981). Among the various models which describe the electronic thermodynamic functions in highly compressed matter, the Thomas–Fermi model is the one most often used in hydrodynamic codes, e.g. in the simulation of the inertial confinement fusion problem.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al'Tshuler, L. V., Bakanova, A. A. & Trunin, R. F. 1962 JETP (Soviet Physics), 15, 65.Google Scholar
Beer, A. C., Chase, M. N. & Choquard, P. F. 1955 Helv. Phys. Acta, 28, 529.Google Scholar
Bloch, F. 1929 Zeits. f. Phys. 57, 545.CrossRefGoogle Scholar
Brillouin, L. 1934 (Actualites Sci. Industr., No. 160, Paris: Hermann).Google Scholar
Brush, S. G. 1967 Progress in High Temperature Physics and Chemistry (Ed: Rouse, C. A.), 1, 1.Google Scholar
Chandrasekhar, S. 1939 Introduction to the Study of Stellar Structure, (Chicago: University of Chicago Press; now available in Dover edition).Google Scholar
Cowan, R. D. & Ashkin, J. 1957 Phys. Rev. 105, 144.CrossRefGoogle Scholar
Eliezer, S., Ghatak, A. & Hora, H. 1984 An Introduction to Equation of State (manuscript in preparation)Google Scholar
Fermi, E. 1928 Zeits. f. Phys. 48, 73.CrossRefGoogle Scholar
Feynman, R. P., Metropolis, N. & Teller, E. 1949 Phys. Rev. 75, 1561.CrossRefGoogle Scholar
Ghatak, A. K. & Lokanathan, S. 1984 Quantum Mechanics, (New Delhi, India: Macmillan).Google Scholar
Gilvarry, J. J. 1954 Phys. Rev. 96, 934.CrossRefGoogle Scholar
Goldstein, H. 1950 Classical Mechanics, (Reading, Mass.: Addison Wesley).Google Scholar
Gombas, P. 1949 Die statistische theorie des atoms und ihre anwendungen, (Wien: Springer-Verlag).CrossRefGoogle Scholar
Hora, H. 1981 Physics of Laser Driven Plasmas, (New York: John Wiley).Google Scholar
Jensen, H. 1938 Zeits. f. Phys. 111, 373.CrossRefGoogle Scholar
Jensen, H., Meyer-Gossler, G. & Rohde, H. 1938 Zeits. f. Phys. 110, 277.CrossRefGoogle Scholar
Kirzhnits, D. A. 1957 JETP (Soviet Physics), 5, 64.Google Scholar
Kirzhntts, D. A. 1959 JETP (Soviet Physics), 8, 1081.Google Scholar
Kompaneets, A. S. & Pavlovskii, E. S. 1957 JETP (Soviet Physics), 4, 328.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1965, Quantum mechanics: non relativistic theory, (Oxford: Pergamon Press) § 71.Google Scholar
Latter, R. 1955 Phys. Rev. 99, 1854.CrossRefGoogle Scholar
March, N. H. 1957 Adv. Phys. 6, 1.CrossRefGoogle Scholar
McCarthy, S. L. 1965 Lawrence Radiation Laboratory Report UCRL-14364.Google Scholar
McDougall, J. & Stoner, E. C. 1938 Trans. Roy. Soc. (London), A237, 67.Google Scholar
Moliére, G. 1947 Zeits. f. Naturforsch. 2A, 133.CrossRefGoogle Scholar
More, R. M. 1981 Lawrence Livermore Laboratory Report UCRL-84991 (Parts I and II).Google Scholar
Pathria, R. K. 1972 Statistical Mechanics, (Oxford: Pergamon Press).Google Scholar
Plaskett, J. S. 1953 Proc. Phys. Soc. A66, 178.CrossRefGoogle Scholar
Saha, M. N. & Srivastava, B. N. 1958 A Treatise on Heat, (Allahabad, India: The Indian Press).Google Scholar
Schwinger, J. 1980 Phys. Rev. A22, 1827; see also Schwinger, J. 1981 Phys. Rev. A24, 2353; DeRaad, L. L. & Schwinger, J. 1982 Phys. Rev. A25, 2399.Google Scholar
Slater, J. C. & Krutter, H. M. 1935 Phys. Rev. 47, 559.CrossRefGoogle Scholar
Sommerfeld, A. 1932 Zeits. f. Physik, 78, 283.CrossRefGoogle Scholar
Thomas, L. H. 1927 Proc. Camb. Phil. Soc. 23, 542.CrossRefGoogle Scholar
Torrens, I. M. 1972 Interatomic Potentials, (New York: Academic Press).CrossRefGoogle Scholar
Umeda, K. & Tomishima, Y. 1953 J. Phys. Soc. Japan, 8, 360.CrossRefGoogle Scholar