Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T01:34:51.973Z Has data issue: false hasContentIssue false

Review of secondary and tertiary reactions, and neutron scattering as diagnostic techniques for inertial confinement fusion targets

Published online by Cambridge University Press:  09 March 2009

H. Azechi
Affiliation:
Institute of Laser Engineering, Osaka University, 2–6 Yamada-oka, Suita, Osaka 566, Japan
M. D. Cable
Affiliation:
Lawrence Livermore National Laboratory, P.O. Box 5508, Livermore, CA 94550, USA
R. O. Stapf
Affiliation:
Institute of Laser Engineering, Osaka University, 2–6 Yamada-oka, Suita, Osaka 566, Japan

Abstract

Fuel areal density, 〈ρR〉, is a fundamental quantity for ICF implosions. For current and future targets, areal densities are large enough that a variety of neutron based diagnostic techniques can be used to determine fuel 〈ρR〉. These include measurements based on the secondary production of DT neutrons from initially pure deuterium fuel and, for higher 〈ρR〉 values, techniques utilizing high energy tertiary neutrons or lower energy scattered neutrons. This paper describes these techniques and gives an overview of the current experimental status.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azechi, H. et al. 1986 Appl. Phys. Lett. 49, 555.CrossRefGoogle Scholar
Azechi, H. et al. 1986a Bull. Am. Phys. Soc. 31, 1417.Google Scholar
Azechi, H. et al. 1987 Phys. Rev. Lett. 59, 2635.CrossRefGoogle Scholar
Basov, N. G. et al. 1986 Fiz. Plasma 12, 916 [Sov. J. Plasma Phys. 12, 916; [Sov. J. Plasma Phys. 12, 526].Google Scholar
Blue, T. E. & Harris, D. B. 1981 Nucl. Sci. Eng. 77, 463.CrossRefGoogle Scholar
Blue, T. E. et al. 1983 J. Appl. Phys. 54, 615.CrossRefGoogle Scholar
Bonner, T. W., Conner, J. P. & Lillie, A. B. 1952 Phys. Rev. 88, 473.CrossRefGoogle Scholar
Cable, M. D. et al. 1986a Bull. Am. Phys. Soc. 31, 1461.Google Scholar
Cable, M. D. & Hatchett, S. P. 1987 J. Appl. Phys. 62, 2233.CrossRefGoogle Scholar
Cartwright, B. G., Shirk, E. K. & Price, P. B. 1978 Nucl. Instrum. Meth. 153, 457.CrossRefGoogle Scholar
Campbell, M. E. et al. 1980 J. Appl. Phys. 51, 6062.CrossRefGoogle Scholar
Conner, J. P., Bonner, T. W. & Smith, J. R. 1952 Phys. Rev. 88, 468.CrossRefGoogle Scholar
Gamalii, E. G. et al. 1975 ZhETF Pis. Red. 21, 156 [JETP Lett. 21, 70].Google Scholar
Iguchi, T. et al. 1988 Int'l. Symp. Fusion Nucl. Tech., April 1988, Tokyo (to be published).Google Scholar
Kacenjar, S. et al. 1982 Phys. Rev. Lett. 49, 463.CrossRefGoogle Scholar
Kunz, W. E. 1955 Phys. Rev. 97, 456.CrossRefGoogle Scholar
Lane, S. M. et al. 1985 Lawrence Livermore National Laboratory Report, No. UCRL-50021–84, pp. 561.Google Scholar
Miley, G. H., Towner, H. & Ivich, N. 1974 University of Illinois Rep., COO-2218–17.Google Scholar
Nishihara, K., Tsuji, R. & Azechi, H. 1987 Jpn. J. Appl. Phys. 26, L1301.CrossRefGoogle Scholar
Tsuji, R., Nishihara, K. & Ido, S. 1985 Jpn. J. Appl. Phys. 24, 1689.CrossRefGoogle Scholar
Welch, D.R., Kisley, H. & Miley, G. H. 1988 Rev. Sci. Instrum. 59, 610.CrossRefGoogle Scholar