Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-09T09:44:25.738Z Has data issue: false hasContentIssue false

Recent results on implosions directly driven at λ = 0·26-μm laser wavelength

Published online by Cambridge University Press:  09 March 2009

M. Koenig
Affiliation:
LULI, Ecole Polytechnique, 91128 Palaiseau, France
V. Malka
Affiliation:
LULI, Ecole Polytechnique, 91128 Palaiseau, France
E. Fabre
Affiliation:
LULI, Ecole Polytechnique, 91128 Palaiseau, France
P. Hammerling
Affiliation:
LULI, Ecole Polytechnique, 91128 Palaiseau, France
A. Michard
Affiliation:
LULI, Ecole Polytechnique, 91128 Palaiseau, France
J. M. Boudenne
Affiliation:
LULI, Ecole Polytechnique, 91128 Palaiseau, France
D. Batani
Affiliation:
Universita di Milano Dipartement di Fisica, Via Celoria 16, 20133 Milano, Italy
J. P. Garçonnet
Affiliation:
C.E.L.V., 94450 Villeneuve Saint-Georges, Cedex, France
P. Fews
Affiliation:
University of Bristol, Bristol, UK

Abstract

New diagnostics were implemented on the implosion experiments performed at LULI to improve our measurements of hydroefficiencies: Neutron chronometry gives the time of emission of the fusion reaction products as measured from the peak of the laser pulse; thereby making it possible to correlate the neutron emission with X-ray emission. Core imaging, based upon a maximum entropy reconstruction technique, leads to core size determination and also is a promising diagnostic for wall nonuniformities induced by irradiation conditions. A simple model is developed to retrieve experimental spectra of α-particles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bruneau, D. et al. 1985 Appl. Opt. 24, 3740.CrossRefGoogle Scholar
Brysk, H. 1972 Plasma Phys. 15, 611.CrossRefGoogle Scholar
Fews, A.P. submitted.Google Scholar
Fews, A.P. & Henshaw, D.L. 1982 Nucl. Inst. Meth. 197, 517.CrossRefGoogle Scholar
Garban-Labaune, C. et al. 1982 Phys. Rev. Lett. 48, 1018.CrossRefGoogle Scholar
Garçonnet, J.P. 1988 Rapport des activites laser du C.E.L.V. (unpublished).Google Scholar
Gull, S.F. & Daniell, G.J. 1978 Nature 272, 686.CrossRefGoogle Scholar
Koenig, M. et al. 1992 EPL 18(6), 493.CrossRefGoogle Scholar
Lane, S.M. et al. 1985 Laser Program Annual Report of LLNL.Google Scholar
Lerche, R.A. et al. 1988 UCRL 98394.Google Scholar
Lyons, P.B. et al. 1980 Nucl. Inst. Meth. 171, 459.CrossRefGoogle Scholar
McKenty, P.W. et al. 1991 A.P.S. Meeting (Tampa FL).Google Scholar
Maynard, G. & Deutsch, C. 1985 J. Phys. 46, 1113.CrossRefGoogle Scholar
More, R.M. 1986 In Laser Plasma Interaction 3, Hooper, B., ed. (Camelot Press, South Hampton, UK), p. 157.Google Scholar
Murakami, M. & Nishihara, K. 1987 Jap. Journal of App. Phys. 26(7), 1132.Google Scholar
Poquerusse, A. 1988 Rev. Phys. Appl. 23, 315.CrossRefGoogle Scholar
Schwendeman, D.W. & Whitham, G.B. 1987 Proc. Roy. Soc. Lond. A 413, 297.Google Scholar
Skupsky, S. & Lee, K. 1983 J. Appl. Phys. 54(7), 3662.CrossRefGoogle Scholar
Storm, E. 1991 Invited paper, 21st ECLIM (Warsaw, Poland).Google Scholar