Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T22:36:59.387Z Has data issue: false hasContentIssue false

Rayleigh–Taylor instability: Modes and nonlinear evolution

Published online by Cambridge University Press:  09 March 2009

H. J. Kull
Affiliation:
Technische Hochschule Darmstadt, Institut für Angewandte Physik, D-6100 Darmstadt, FRG.

Abstract

Analytical models are presented for describing modifications of the classical Rayleigh–Taylor instability theory in the context of inertial confinement fusion. The effects of stratification, finite layers, compressibility, convection and heat conduction are analysed and their mutual importance is estimated. It is found, that convective stabilization dominates for usual flow parameters and can account for growth reductions by a factor of 2 to 3. It was further possible to calculate the nonlinear evolution with the help of representative flow models and to follow the dynamics of bubble, spike and vortex formation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G. R., Meiron, D. I. & Orszag, S. A. 1980 Phys. Fluids, 23, 1485.CrossRefGoogle Scholar
Baker, L. 1978 Phys. Fluids, 21, 295.Google Scholar
Baker, L. 1983 Phys. Fluids, 26, 627.CrossRefGoogle Scholar
Bodner, S. E. 1974 Phys. Rev. Lett. 33, 761.CrossRefGoogle Scholar
Book, D. L. 1979 J. Fluid Mech. 95, 779.CrossRefGoogle Scholar
Brueckner, K. A., Jorna, S. & Janda, R. 1974 Phys. Fluids, 17, 1554.CrossRefGoogle Scholar
Catto, P. J. 1978 Phys. Fluids, 21, 30.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability Oxford Univ. Press (Clarendon).Google Scholar
Emery, M. H., Gardner, J. H. & Boris, J. P. 1982 Phys. Rev. Lett. 48, 677.Google Scholar
Evans, R. G., Bennett, A. J. & Pert, G. J. 1982 Phys. Rev. Lett. 49, 1639.CrossRefGoogle Scholar
Henderson, D. R., McCrory, R. L. & Morse, R. L. 1974 Phys. Rev. Lett. 33, 205.CrossRefGoogle Scholar
Jacobs, H. 1985 Nucl. Technol. 71, 131.CrossRefGoogle Scholar
Kull, H. J. 1982 Perfect Fluid Model of Rayleigh–Taylor Instability IAP-Report 102/82 Technische Hochschule Darmstadt.Google Scholar
Kull, H. J. 1983 Phys. Rev. Lett. 51, 1434.CrossRefGoogle Scholar
Kull, H. J. 1985 Phys. Rev. A, 31, 540.CrossRefGoogle Scholar
Kull, H. J. 1986 Phys. Rev. A, 33, 1957.CrossRefGoogle Scholar
Kull, H. J. & Anisimov, S. I. 1986 to be published in Phys. Fluids.Google Scholar
Lewis, D. J. 1950 Proc. R. Soc. London Ser. A, 202, 81.Google Scholar
Lindl, J. D. & Mead, W. C. 1975 Phys. Rev. Lett. 34, 1273.Google Scholar
Manheimer, W. M. & Colombant, D. G. 1984 Phys. Fluids, 27, 983.CrossRefGoogle Scholar
McCrory, R. L., Montierth, L., Morse, R. L. & Verdon, C. P. 1981 Laser Interaction and Related Plasma Phenomena, Plenum, New York.Google Scholar
Mikaelian, K. O. 1982 Phys. Rev. A, 26, 2140.Google Scholar
Ott, E. & Russell, D. A. 1978 Phys. Rev. Lett. 41, 1048.CrossRefGoogle Scholar
Ratafia, M. 1973 Phys. Fluids, 16, 1207.CrossRefGoogle Scholar
Rayleigh, , Lord 1883 Proc. London Math Soc. 14, 170.Google Scholar
Shiau, J. N., Goldman, E. B. & Weng, C. I. 1974 Phys. Rev. Lett. 32, 352.CrossRefGoogle Scholar
Takabe, H. & Mima, K. 1980 Phys. Soc. Japan, 48, 1793.CrossRefGoogle Scholar
Takabe, H., Montierth, L. & Morse, R. L. 1983 Phys. Fluids, 26, 2299.Google Scholar
Taylor, G. 1950 Proc. R. Soc. London Ser. A, 201, 192.Google Scholar
Verdon, C. P., McCrory, R. L., Morse, R. L., Baker, G. R., Meiron, D. I. & Orszag, S. A. 1982 Phys. Fluids, 25, 1653.Google Scholar
Youngs, D. L. 1984 Physica, 12D, 32, North-HollandAmsterdam.Google Scholar