Published online by Cambridge University Press: 09 March 2009
Radiation-induced conductivity (RIC) is a generalized term for photoconductivity expanded to include nonelectromagnetic radiation. RIC offers several distinct advantages for the detection of high-energy radiation: (i) the speed of response of a detector is determined by a bulk property of the material, the carrier lifetime; (ii) the detector can be directly illuminated by the signal radiation-no dead layer; and (iii) the selection of the detector material and its geometry is very flexible. This paper will discuss the principles of RIC for X rays and neutrons, the fabrication of detectors, and applications. RIC detectors have been fabricated from Si, InP, GaAs, and diamond. Bulk and thin film materials have been used. The carrier lifetime was varied by the introduction of trapping sites in the material. This can be done in the material production process in the case of doping (e.g., Fe in InP) and thin films or produced from radiation damage of a pure crystalline material. Lifetimes as short as a few picoseconds have been observed. A variety of detectors have been tested using pulsed optical, X ray, and neutron sources. Absolute sensitivities and temporal response has been measured and compared to theoretical models of the detector's performance for both X rays and neutrons. Finally, applications of these detectors to inertial confinement fusion measurement will be shown.