Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T05:38:48.951Z Has data issue: false hasContentIssue false

Radiation effects on shock propagation in Al target relevant to equation of state measurements

Published online by Cambridge University Press:  28 February 2007

T. DESAI
Affiliation:
Dipartimento di Fisica “G.Occhialini,” Università di Milano-Bicocca, Milano, Italy ETSII, Universidad Politecnica, Madrid, Spain
R. DEZULIAN
Affiliation:
Dipartimento di Fisica “G.Occhialini,” Università di Milano-Bicocca, Milano, Italy
D. BATANI
Affiliation:
Dipartimento di Fisica “G.Occhialini,” Università di Milano-Bicocca, Milano, Italy

Abstract

We present one-dimensional simulations performed using the multi group radiation hydro code MULTI with the goal of analyzing the target preheating effect under conditions similar to those of recent experiments aimed at studying the Equation of State (EOS) of various materials. In such experiments, aluminum is often used as reference material; therefore its behavior under strong shock compression and high-intensity laser irradiation (1013–1014 W/cm2) should be studied in detail. Our results reveal that at high laser irradiance, the laser energy available to induce shock pressure is reduced due to high X-rays generation. Simultaneously X-rays preheat the bulk of the reference material causing significant heating prior to shock propagation. Such effects induce deviations in shock propagation with respect to cold aluminum.

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al'tshuler, L.V., Krupnikov, K.K. & Brazhnik, M.I. (1958). Dynamic compressibility of metals under pressures from 400,000 to 4,000,000 atmospheres. Soviet JETP 34, 614.Google Scholar
Batani, D., Balducci, A., Beretta, D. & Bernardinello, A., Lower, Th., Koenig, M., Benuzzi, A., Faral, B. & Hall, T. (2000). Equation of state data for gold in the pressure range < 10 TPa. Phys. Rev. B 61, 9287.Google Scholar
Batani, D., Bleu, C. & Lower, Th. (2002). Modelistic, simulation and application of phase plates. Euro. Phy. J. D 19, 231.Google Scholar
Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Boudenne, J.M., Grandjouan, N., Temporal, M. & Atzeni, S. (1996). Optical smoothing for shock wave generation: Application to the measurement of equation of state. Laser Part. Beams 14, 211.Google Scholar
Batani, D., Löwer, Th., Hall, T., Benuzzi, A. & Koenig, M. (2003b). Production of high quality shocks for equation of state experiments. Euro. Phy. J. D 23, 99.Google Scholar
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Ullschmied, J., Krousky, E., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Prg, A., Nishimura, H., Ochi, Y. & Zvorykin, V. (2003a). Shock pressure induced by 0.44 μm laser radiation on aluminum. Laser Part. Beams 21, 479.Google Scholar
Batani, D., Stabile, H., Ravasio, A., Desai, T., Lucchini, G., Ullschmied, J., Krousky, E., Juha, L., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, C., Mocek, T., Präg, A., Nishimura, H. & Ochi, Y. (2003c). Ablation pressure scaling at short laser wavelength. Phys. Rev. E 68, 067403.Google Scholar
Batani, D., Stabile. H., Tomasini, M., Lucchini, G., Ravasio, A., Koenig, M., Benuzzi-Mounaix, A., Nishimura, H., Ochi, Y., Ullschmied, J., Skala, J., Kralikova, B., Pfeifer, M., Kadlec, Ch., Mocek, T., Präg, A., Hall, T., Milani, P., Barborini, E., &Piseri, P. (2004). Hugoniot data for carbon at megabar pressures. Phys. Rev. Lett. 92, 065503.Google Scholar
Benuzzi, A., Koenig, M., Faral, B., Krishnan, J., Pisani, F., Batani, D., Bossi, S., Beretta, D., Hall, T., Ellwi, S., Huller, S., Honrubia, J. & Grandjouan, N. (1998). Preheating study by reflectivity measurements in laser driven shocks. Phys. Plasmas 5, 2410.Google Scholar
Eidmann, K. (1994). Radiation transport and atomic physics of Plasmas. Laser Part. Beams 12, 22.Google Scholar
Honrubia, J.J., Dezulian, R., Batani, D., Bossi, S., Koenig, M., Benuzzi, A. & Grandjouan, N. (1998). Simulation of preheating effects in shock wave experiments. Laser Part. Beams 16, 13.Google Scholar
Honrubia, J.J., Dezulian, R., Batani, D., Koenig, M., Benuzzi, A., Krishnan, J., Faral, B., Hall, T. & Ellwi, S. (1999). Preheating effects in laser driven shock waves. J. Quant. Spectroscopy Radia. Transf. 61, 647.Google Scholar
Kemp, A.J. & Meyer-ter-Vehn, J. (1998). An equation of state code for hot dense matter based on the QEOS description. Nucl. Instr. Meth. Phys. Res. A 415, 674.Google Scholar
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Bossi, S. & Benuzzi, A. (1994). Use of optical smoothing techniques for shock wave generation in laser produced plasmas. Phys. Rev. E 50, R3314.Google Scholar
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Bossi, S., Benuzzi, A., Remond, C., Perrine, J., Temporal, M. & Atzeni, S. (1995). Relative consistency of equation of state by laser driven shock waves. Phys. Rev. Lett. 74, 2260.Google Scholar
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.Google Scholar
Lyon, D.P. & Johnson, J.D., Eds. (1992). SESAME: The LANL Equation of State Database. Report No. LA-UR-92-3407. Los Alamos, NM: Los Alamos National Laboratory.
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059.Google Scholar
Ramis, R., Schmalz, R.F. & Meyer-ter-Vehn, J. (1988). MULTI: A computer code for one-dimensional multigroup radiation hydrodynamics. Comput. Phys. Commun. 49, 475.Google Scholar
Zeldovich, Ya.B. & Raizer, Yu.P. (1967). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.