Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T01:08:01.676Z Has data issue: false hasContentIssue false

Quasi-monoenergetic GeV electrons from the interaction of two laser pulses with a gas

Published online by Cambridge University Press:  12 November 2008

K.P. Singh*
Affiliation:
Simutech, Gainesville, Florida
V. Sajal
Affiliation:
Department of Physics, Jaypee Institute of Information Technology University, Noida, Uttar Pradesh, India
D.N. Gupta
Affiliation:
Simutech, Gainesville, Florida
*
Address correspondence and reprint requests to: Kunwar Pal Singh, Simutech, 3521 SW 31st. Drive, Gainesville, FL 32608. E-mail: [email protected]

Abstract

A scheme is proposed for the acceleration of electrons generated during the ionization of a gas by two laser pulses. The electrons created from the ionization of neutral atoms near the rising edge of the pulse do not gain sufficient energy. If a prepulse is used before the main pulse then the prepulse removes electrons from the outer shells, and the main laser pulse interacts with the electrons in the inner shells of high atomic number gases, such as krypton and argon. The electrons are generated close to the peak of the main laser pulse and gain energy in GeV with a small spread in the energy and low emittance angle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Augst, S., Meyerhofer, D.D., Strickland, D. & Chin, S.L. (1991). Laser ionization of noble gases by Coulomb-barrier suppresion. J. Opt. Soc. Am. B 8, 858867.Google Scholar
Bahk, S.W., Rousseau, P., Planchon, T.A., Chvykov, V., Kalintchenko, G., Maksimchuk, A., Mourou, G.A. & Yanovsky, V. (2005). Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2). Appl. Phys. B. 80, 823832.CrossRefGoogle Scholar
Batani, D., Baton, S.D., Manclossi, M., Santos, J.J., Amiranoff, F., Koenig, M., Martinolli, E., Antonicci, A., Rousseaux, C., Rabec Le Gloahec, M., Hall, T., Malka, V., Cowan, T. E., King, J., Freeman, R.R., Key, M. & Stephens, R. (2005). Ultraintense laser-produced fast-electron propagation in gas jets. Phys. Rev. Lett. 94, 055004.Google Scholar
Bruhwiler, D.L., Dimitrov, D.A., Cary, J.R., Esarey, E., Leemans, W.P. & Giacone, R.E. (2003). Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators. Phys. Plasmas 10, 20222030.CrossRefGoogle Scholar
Carlson, T.A., Nestor, C.W., Wasserman, N. & McDowell, J.D. (1970). Atomic Data 2, 63 ELI – Extreme Light Infrastructure, European Project. http://www.eli-laser.eu.Google Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams, 25, 38.Google Scholar
Fuerbach, A., Fernandez, A., Apolonski, A., Fuji, T. & Krausz, F. (2005). Chirped-pulse oscillators for the generation of high energy femtosecond laser pulses. Laser Part. Beams 23, 113116.CrossRefGoogle Scholar
Gedder, C.G.R., Toth, C.S., Tilborg, J. Van., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.Google Scholar
Glinec, Y., Faure, J., Pukhov, A., Kiselev, S., Gordienko, S., Mercier, B. & Malka, V. (2005). Generation of quasimonoenergetic electron beams using ultrashort and ultraintense laser pulses. Laser Part. Beams 23, 161166.CrossRefGoogle Scholar
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.CrossRefGoogle Scholar
Hogan, M.J., Barnes, C.D., Clayton, C.E., Decker, F.J., Deng, S., Emma, P., Huang, C., Iverson, R.H., Johnson, D.K., Joshi, C., Katsouleas, T., Krejcik, P., Lu, W., Marsh, K.A., Mori, W.B., Muggli, P., O'Connell, C.L., Oz, E., Siemann, R.H. & Walz, D. (2005). Multi-GeV energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95, 054802.Google Scholar
Hu, S.X. & Starace, A.F. (2002). GeV electrons from ultraintense laser interaction with highly charged ions. Phys. Rev. Lett. 88, 245003.CrossRefGoogle ScholarPubMed
Hu, S.X. & Starace, A.F. (2006). Laser acceleration of electrons to giga-electron-volt energies using highly charged ions. Phys. Rev. E 73, 066502.CrossRefGoogle ScholarPubMed
Joshi, C. (2007). The development of laser- and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501.Google Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.Google Scholar
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.CrossRefGoogle Scholar
Leemans, W.P., Nagler, B., Gonsalves, A.J., Toth, Cs., Nakamura, K., Geddes, C.G.R., Esarey, E., Schroeder, C.B. & Hooker, S.M. (2006). GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696699.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Malik, H.K., Kumar, S. & Nishida, Y. (2007). Electron acceleration by laser produced wake field: Pulse shape effect. Opt. Comm. 280, 417423.CrossRefGoogle Scholar
Mangles, S.P.D., Murphy, C.D., Najmuddin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Lanhley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431, 535538.Google Scholar
Michel, P., Esarey, E., Schroeder, C.B., Shadwick, B.A. & Leemans, W.P. (2006). Efficient electron injection into plasma waves using higher-order laser modes. Phys. Plasmas 13, 113112.CrossRefGoogle Scholar
Moore, C.I., Ting, A., Jones, T., Briscoe, E., Hafizi, B., Hubbard, R.F., & Sprangle, P. (2001). Measurements of energetic electrons from the high-intensity laser ionization of gases. Phys. Plasmas 8, 24812487.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347–63.CrossRefGoogle Scholar
Romeo, A., Finocchio, G., Carpentieri, M., Torres, L., Consolo, G. & Azzerboni, B. (2008). A numerical solution of the magnetization reversal modeling in a permalloy thin film using fifth order Runge–Kutta method with adaptive step size control. Phys. B 403, 464468.Google Scholar
Singh, K.P. (2006). Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse. Phys. Plasmas 13, 043101.Google Scholar
Singh, K.P. & Malik, H.K. (2008). Resonant enhancement of electron energy by frequency chirp during laser acceleration in an azimuthal magnetic field in a plasma. Laser Part. Beams 26, 363369.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219.Google Scholar
Tsung, F.S., Lu, W., Tzoufras, M., Mori, W.B., Joshi, C., Vieira, J.M., Silva, L.O. & Fonseca, R.A. (2006). Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers. Phys. Plasmas 13, 056708.Google Scholar