Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T11:29:30.399Z Has data issue: false hasContentIssue false

Pulsed-power-generated plasma of high reproducibility

Published online by Cambridge University Press:  09 March 2009

H. Kunze
Affiliation:
Fraunhofer-Institut für Lasertechnik, Steinbachstr. 15, D-5100 Aachen, Germany
R. Noll
Affiliation:
Fraunhofer-Institut für Lasertechnik, Steinbachstr. 15, D-5100 Aachen, Germany
C. R. Haas
Affiliation:
Lehrstuhl für Lasertechnik, RWTH Aachen, Steinbachstr. 15, D-5100 Aachen, Germany
M. Elfers
Affiliation:
Lehrstuhl für Lasertechnik, RWTH Aachen, Steinbachstr. 15, D-5100 Aachen, Germany
J. Hertzberg
Affiliation:
Lehrstuhl für Lasertechnik, RWTH Aachen, Steinbachstr. 15, D-5100 Aachen, Germany
G. Herziger
Affiliation:
Fraunhofer-Institut für Lasertechnik, Steinbachstr. 15, D-5100 Aachen, Germany Lehrstuhl für Lasertechnik, RWTH Aachen, Steinbachstr. 15, D-5100 Aachen, Germany

Abstract

Plasmas of high reproducibility that are suitable for beam-plasma experiments are generated by a pulsed-power z-pinch discharge. The z-pinch device is designed as a plasma target for the investigation of ion beam-plasma interactions. The dynamic plasma state is characterized by the electron density, the electron temperature, and the magnetic field distribution, which are observed using time-resolved diagnostics. For z-pinch discharges in hydrogen, average electron densities of up to (2.6 ± 0.1) × 1018 electrons/cm3 were measured interferometrically. Electron temperatures in the range 2–7 eV are determined by time-resolved spectroscopy. The reproducibility of the electron density of the z-pinch discharge in terms of shot-to-shot fluctuations is estimated to be better than 3%. This is a favorable condition for performing beam-plasma experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boggasch, E. et al. 1984 CERN PS/AA/Note 84–10.Google Scholar
Boggasch, E. et al. 1991 Laser Part. Beams 8, 583.Google Scholar
Davis, J. et al. 1988 IEEE Trans. Plasma Sci. 16 (5), 482.CrossRefGoogle Scholar
Dietrich, K.-G. et al. 1990 Laser Part. Beams 8, 583.CrossRefGoogle Scholar
Finken, K. H. 1983 Prog. Phys. (Berlin) 31 (1).Google Scholar
Forsyth, E. B. et al. 1965 IEEE Trans. Nucl. Sci. 12, 872.CrossRefGoogle Scholar
Griem, H. R. 1964 Plasma Spectroscopy (McGraw-Hill, New York).Google Scholar
Hashino, Y. et al. 1974 Jpn. J. Appl. Phys. 13, 1134.CrossRefGoogle Scholar
Illingworth, R. 1975 J. Phys. D 8, 1956.CrossRefGoogle Scholar
Jahoda, F. C. & Sawyer, G. A. 1971 Methods of Experimental Physics, Lovberg, R. H. & Griem, , eds. (Academic, New York), Vol. 9B, Part 11.Google Scholar
Katzenstein, J. & Lovberg, R. H. 1975 Appl. Phys. Lett. 26, 113.CrossRefGoogle Scholar
Mulser, P. 1970 Z. Naturforsch. A 25, 282.CrossRefGoogle Scholar
Noll, R. et al. 1988a J. Phys. Colloq. 49, C7–177.CrossRefGoogle Scholar
Noll, R. et al. 1988b Proceedings of the Z-Pinch and Plasma Focus Workshop, Nice, p. 89.Google Scholar
Spitzer, L. 1956 Physics of Fully Ionized Gases (Interscience, New York), p. 38.Google Scholar
Weyrich, K. et al. 1989 Nucl. Instrum. Methods Phys. Res. A278, 52.CrossRefGoogle Scholar
Zwicker, H. 1964 Z. Phys. 177, 54.CrossRefGoogle Scholar