Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T16:36:53.576Z Has data issue: false hasContentIssue false

Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams

Published online by Cambridge University Press:  01 October 2004

J. VAN TILBORG
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, California
C.B. SCHROEDER
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, California
E. ESAREY
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, California
W.P. LEEMANS
Affiliation:
Lawrence Berkeley National Laboratory, University of California, Berkeley, California

Abstract

The electric field in the temporal and spectral domain of coherent diffraction-limited transition radiation is studied. An electron bunch, with arbitrary longitudinal momentum distribution, propagating at normal incidence to a sharp metal-vacuum boundary with finite transverse dimension is considered. A general expression for the spatiotemporal electric field of the transition radiation is derived, and closed-form solutions for several special cases are given. The influence of parameters such as radial boundary size, electron momentum distribution, and angle of observation on the waveform (e.g., radiation pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent radiation waveform is shown to have a single-cycle profile. Application to a novel THz source based on a laser-driven accelerator is discussed.

Type
INTERNATIONAL WORKSHOP ON LASER AND PLASMA ACCELERATORS
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was delivered at the International Workshop on Laser and Plasma Accelerators, held at Portovenere, Italy, September 29 to October 3, 2003.

References

REFERENCES

Bromage, J., Walmsley, I.A. & Stroud, C.R. Jr. (1999). Direct measurement of a photoconductive receiver's temporal response by dithered-edge sampling. Opt. Lett. 24, 17711773.Google Scholar
Budiarto, E., Margolies, J., Jeong, S., Son, J. & Bokor, J. (1996). High-intensity terahertz pulses at 1-kHz repetition rate. IEEE J. Quantum Electron. 32, 18391846.Google Scholar
Catravas, P., Leemans, W.P., Esarey, E., Zolotorev, M., Whittum, D., Iverson, R., Hogan, M. & Walz, D. (1999). Beam profile measurement at 30 GeV using optical transition radiation. Proc. Part. Accel. Conf., 21112113.
Cornacchia, M., Arthur, J., Bentson, L., Carr, R., Emma, P., Galayda, J., Krejcik, P., Lindau, I., Safranek, J., Schmerge, J., Stohr, J., Tatchyn, A. & Wootton, A. (2001). A Sub-Picosecond Photon Pulse Facility for SLAC. Report No. SLAC-PUB-8950. Stanford Linear Accelerator Center.
Ferguson, B., Wang, S., Gray, D., Abbot, D. & Zhang, X.-C. (2002). T-ray computed tomography. Opt. Lett. 27, 13121314.Google Scholar
Ginzburg, V.L. & Frank, I.M. (1946). To the Theory of Transition Radiation. Sov. Phys. JETP 16, 15.Google Scholar
Jackson, J.D. (1975). Classical Electrodynamics. New York: Wiley
Kung, P., Lihn, Hung-chi, Wiedeman, H. & Bocek, D. (1994). Generation and measurement of 50-fs (rms) electron pulses. Phys. Rev. Lett. 73, 967970.Google Scholar
Lawson, J.D. (1979). Lasers and accelerators. IEEE Trans. Nucl. Sci. NS-26, 42174219.Google Scholar
Leemans, W.P. (1997). Electron beam monitoring at high frequencies and ultra-fast time scales. Proc. Advanced Accelerator Conf. AIP 398, 2339.
Leemans, W.P., Geddes, C.G.R., Faure, J., Toth, Cs., van Tilborg, J., Schroeder, D.B., Esarey, E., Fubiani, G., Auerbach, D., Marcelis, B., Carnahan, M.A., Kaindl, R.A., Byrd, J. & Martin, M.C. (2003). Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802/14.Google Scholar
Le Sage, G.P., Cowan, T.E., Fiorito, R.B. & Rule, D.W. (1999). Transverse phase space mapping of relativistic electron beams using optical transition radiation. Phys. Rev. ST Accel. Beams 2, 122802/17.Google Scholar
Li, M., Cho, G.C., Ju, T.M., Zhang, X.-C., Wang, S.Q. & Kennedy, J.T. (1999). Time-domain dielectric constant measurement of thin film in GHz-THz frequency range near the Brewster angle. Appl. Phys. Lett. 74, 21132115.Google Scholar
Lu, Z.G., Campbell, P. & Zhang, X.-C. (1997). Free-space electro-optic sampling with a high repetition-rate regenerative amplified laser. Appl. Phys. Lett. 71, 593595.Google Scholar
Lumpkin, A.H., Dejus, R., Berg, W.J., Borland, M., Chae, Y.C., Moog, E., Sereno, N.S. & Yang, B.X. (2001). First observation or z-dependent electron-stream microbunching using coherent transition radiation. Phys. Rev. Lett. 86, 7982.Google Scholar
Mandel, L. & Wolf, E. (1995). Optical Coherence and Quantum Optics. New York: Cambridge University Press.
Mittleman, D.M., Gupta, M., Neelamani, R., Baraniuk, R.G., Rudd, J.V. & Koch, M. (1999). Recent advances in terahertz imaging. Appl. Phys. B 8, 10851094.CrossRefGoogle Scholar
Orenstein, J. & Millis, A.J. (2000). Advances in the physics of high-temperature superconductivity. Science 288, 468474.CrossRefGoogle Scholar
Palmer, R.B. (1980). A laser-driven grating LINAC. Part. Accel. 11, 8190.CrossRefGoogle Scholar
Ricci, K.N. & Smith, T.I. (2000). Longitudinal electron beam and free electron laser microbunch measurements using off-phase rf acceleration. Phys. Rev. ST Accel. Beams 3, 032801/14.Google Scholar
Schroeder, C.B., Esarey, E., van Tilborg, J. & Leemans, W.P. (2004). Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69, 016501/112.Google Scholar
Shibata, Y., Takahashi, T., Kanai, R., Ishi, K., Ikezawa, M., Ohkuma, J., Okuda, S. & Okada, T. (1994). Diagnostics of an electron beam of a linear accelerator using coherent transition radiation. Phys. Rev. E 50, 14791484.Google Scholar
Tae-In, Jeon & Grischkowski, D. (1997). Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Phys. Rev. Lett. 78, 11061109.Google Scholar
Ter-Mikaelian, T.M. (1972). High-energy electromagnetic processes in condensed media. New York: Wiley.
Yan, X., MacLeod, A.M., Gillespie, W.A., Knippels, G.M.H., Oepts, D., van der Meer, A.F.G. & Seidel, W. (2000). Subpicosecond electro-optic measurement of relativistic electron pulses. Phys Rev. Lett. 85, 34043407.CrossRefGoogle Scholar
Zhang, X.-C., Hu, B.B., Darrow, J.T. & Auston, D.H. (1990). Appl. Phys. Lett. 56, 10111013.