Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T01:49:07.279Z Has data issue: false hasContentIssue false

Progress with gas lenses

Published online by Cambridge University Press:  09 March 2009

M.M. Michaelis
Affiliation:
Plasma Physics Research Institute, University of Natal, Durban, South Africa
M. Kuppen
Affiliation:
Plasma Physics Research Institute, University of Natal, Durban, South Africa
A. Prause
Affiliation:
Plasma Physics Research Institute, University of Natal, Durban, South Africa
A. Forbes
Affiliation:
Plasma Physics Research Institute, University of Natal, Durban, South Africa
N. Viranna
Affiliation:
Plasma Physics Research Institute, University of Natal, Durban, South Africa
N. Lisi
Affiliation:
Plasma Physics Research Institute, University of Natal, Durban, South Africa

Abstract

Three gas lenses appear promising for fusion and other applications. We review progress of the understanding and scaling of two of these lenses and discuss their potential for industry, advanced research, and fusion.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bacon, M. et al. 1989 J. Appl. Phys. 66, 1075.CrossRefGoogle Scholar
Basov, N.G. et al. (in press) The Physics of Laser Fusion (Editions Frontieres, Paris).Google Scholar
Born, M. & Wolf, E. 1980 Principles of Optics, 6th ed. (Pergamon Press, Oxford).Google Scholar
Buccellato, R. et al. 1993 a Opt. Comm. 101, 350CrossRefGoogle Scholar
Buccellato, R. et al. 1993b Opt. Laser Technol. 25, 247.CrossRefGoogle Scholar
Cannon, J.N. & Kays, W.M. 1969 J. Heat Transfer. Feb., 135.Google Scholar
Christiansen, W.H. 1988 SPIE 1031, 474.Google Scholar
Forbes, A. 1996 M.Sc Thesis, University of Natal.Google Scholar
Gloge, D. 1967 BellSyst. Tech. J. Feb., 375.Google Scholar
Gower, M.C. et al. 1981 Opt. Comm. 36, 43.CrossRefGoogle Scholar
Kare, J.T. 1990 Proc. SDIO/DARPA Workshop on Laser Propulsion, J.T. Kare, ed. (LLNL Conf. 8710452), Livermore, CA.Google Scholar
Kuppen, M. et al. 1995 Rev. Sci. Instr. 66, 5037.CrossRefGoogle Scholar
Lisi, N. et al. 1994 Opt. & Laser Technol. 26, 25.CrossRefGoogle Scholar
Lisi, N. et al. 1995 Appl. Optics 34, 942.CrossRefGoogle Scholar
Marcuse, D. 1982 Light Transmission Optics. (Van Nostrand and Reinhold, New York).Google Scholar
Martynenko, O.G. 1975 Int. J. Heat and Mass Transfer 18, 793.CrossRefGoogle Scholar
Melles, Griot 1994 Catalogue.Google Scholar
Michaelis, M.M. et al. 1991 Laser Part. Beams 9, 641.CrossRefGoogle Scholar
Michaelis, M.M. et al. 1994 Laser Part. Beams 12, 531.CrossRefGoogle Scholar
Miley, G.H. 1993 Laser Part. Beams 11, 575.CrossRefGoogle Scholar
Moses, G.A. & Peterson, R.R. 1994 Laser Part. Beams 12, 125.CrossRefGoogle Scholar
Notcutt, M. et al. 1988 Opt. & Laser Technol. 20, 243.CrossRefGoogle Scholar
Phipps, C.R. & Michaelis, M.M. 1994 Laser Part. Beams 12, 23.CrossRefGoogle Scholar
Phipps, C.R. 1989 Laser Part. Beams 7, 835.CrossRefGoogle Scholar
Phipps, C.R. et al. 1996 Laser Part. Beams 14, 1.CrossRefGoogle Scholar
Sedov, L.I. 1959 Methods of Similarity and Dimensional Analysis in Mechanics. (Academic, New York).Google Scholar
Torczynski, J.R. & Neal, D.R. 1993 Nucl. Sci. and Eng. 113, 189.CrossRefGoogle Scholar
Young, J. & Mccutcheon, A.R.S. 1973 Chem. Eng. 279, 522.Google Scholar
Zeldovich, Ya.B. & Raizer, Yu.P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. (Academic, New York).Google Scholar