Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T02:35:21.933Z Has data issue: false hasContentIssue false

Progress in UV soft X-ray imaging

Published online by Cambridge University Press:  09 March 2009

D. Schirmann
Affiliation:
Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve Saint-Georges, Cedex, France
J. L. Bocher
Affiliation:
Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve Saint-Georges, Cedex, France
J. P. Le Breton
Affiliation:
Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve Saint-Georges, Cedex, France
A. Mens
Affiliation:
Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve Saint-Georges, Cedex, France
R. Sauneuf
Affiliation:
Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve Saint-Georges, Cedex, France

Abstract

Soft X-ray imaging detection is usually made by using 101–01, 101–07, or SA1 Kodak films. Recent progress in thinned CCD fabrication allows us now to replace films by thinned CCDs to detect UV soft X-ray light with an enhanced sensitivity. We developed a thinned CCD system, and to demonstrate its applicability to replace photographic films we tested it behind a broad spectral range soft X-ray transmission grating spectrometer and a soft X-ray Mo/Si multilayer mirror telescope. Soft X-ray spectra and soft X-ray pictures of laser-created plasma are presented using these instruments implemented with a thinned CCD readout.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babonneau, D. et al. 1991 Laser Particle Beams 9, 527.CrossRefGoogle Scholar
Bailey, P. et al. 1983 EUV, X-ray and Gamma-ray Instrumentation for Astronomy and Atomic Physics (SPIE, San Diego, CA).Google Scholar
Benattar, R. 1988 Revue Phys. Appl. 23, 1733, 1739.CrossRefGoogle Scholar
Benattar, R. & Malka, V. 1989 Proc. SPIE 1140, 73.CrossRefGoogle Scholar
Benattar, R. et al. 1991 Laser Particle Beams 9, 541.Google Scholar
Bocher, J.L. 1987 Rappet CEA/R/5428, 3.46.Google Scholar
Bourgade, J.L. et al. 1988, Rev. Sci. Instrum. 59(8), 1840, 1842.Google Scholar
Cavailler, C. et al. 1984a Proc. SPIE 491, 458.CrossRefGoogle Scholar
Cavailler, C. et al. 1984b Proc. SPIE 491, 693.CrossRefGoogle Scholar
Cavailler, C. et al. 1984c Proc. SPIE 491, 442.Google Scholar
Ceglio, N.M. et al. 1983 Appl. Opt. 22, 318.CrossRefGoogle Scholar
Center for X-Ray Optics 1989 1990 LBL-28001 UC-411.Google Scholar
Chauvineau, J.P. et al. 1991 Proc. SPIE to be published.Google Scholar
De Mascureau, J. et al. 1988 Proc. SPIE 981, 93, 97.CrossRefGoogle Scholar
Dhez, P. 1990 Ann. Phys. Fr. 15, 493.CrossRefGoogle Scholar
Eidmann, K. et al. 1986 Laser Particle Beams 4, 521.Google Scholar
Gauthier, J.C. & Geindre, J.P. 1982 Greco Annual Report.Google Scholar
Hochedez, J.F. et al. 1989 in Proceedings of OE-Lase'89,Los Angeles, CA,SPIE 1070, 53.Google Scholar
Janesick, J. et al. 1985 Rev. Sci. Instrum. 56, 5, 796.Google Scholar
Janesick, J. et al. 1984 Proc. SPIE 501, 2, 31.Google Scholar
Kishimoto, T. 1985 Ph.D. thesis, Max Planck Institut für Quantenoptik, Garching, Germany.Google Scholar
Koppel, L.N. 1977 Rev. Sci. Instrum. 40, 669.CrossRefGoogle Scholar
Le Breton, J.P. et al. 1989 Bull. Am. Phys. Soc. 34, 9.Google Scholar
LLE Review 1987, 33, DOE/DP40200–65, 1.Google Scholar
Mens, A. et al. 1990 Proc. SPIE 1358, 719.Google Scholar
Nail, M. & Mazataud, D. 1991 Nucl. Instrum. Meth. to be published.Google Scholar
Pina, L. et al. 1991 Laser Particle Beams 6, 579.Google Scholar
Shealy, D.L. et al. 1989 J. X-Ray Sci. Tech. 1, 190.Google Scholar
Tassin, C. et al. 1989 Proc. SPIE 1140, 139.CrossRefGoogle Scholar