Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-01T02:20:56.226Z Has data issue: false hasContentIssue false

Potential of Kα radiation by energetic ionic particles for high energy density plasma diagnostics

Published online by Cambridge University Press:  08 June 2006

TOHRU KAWAMURA
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
KAZUHIKO HORIOKA
Affiliation:
Department of Energy Sciences, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
FUMIHIRO KOIKE
Affiliation:
Physics Laboratory, School of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan

Abstract

In this paper, potential of diagnostics with the use of Kα radiation for an energy deposition process from an intense ion-beam to background plasma is considered quantitatively. Kα radiation is a good candidate for the purpose. The wavelength of Kα radiation is varied according to the charge state of an emitter atom, and the diagnostics spatially resolved with radiations from various kinds of charge states can give us a profile of plasma temperature in a target material. For the calculation of Kα yield, an atomic population kinetics code is developed, and the result shows that Kα radiation has potential to get information of a plasma profile heated by an intense ion-beam.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andiel, U., Eidmann, K. & Witte, K. (2002). Comparative study of time-resolved K-shell spectra from aluminum plasmas generated by ultrashort laser pulses at 395 and 790nm. Appl. Phys. Lett. 80, 198200.CrossRefGoogle Scholar
Dyall, K.G., Grant, I.P., Johnson, C.T., Parpia, F.A. & Plummer, E.P. (1989). Grasp: A general-purpose relativistic atomic structure program. Comput. Phys. Commun. 55, 425456.CrossRefGoogle Scholar
Fritzsche, S. & Fricke, B. (1992). Interchannel Interactions and Relaxation in the 2p Auger Spectra of Mg-like Ions. Phys. Scr. T41, 4550.CrossRefGoogle Scholar
Goel, B., Gupta, N.K., Höbel, W., Marten, H., MacFarlane, J.J. & Wang, P. (1998). Kα-Satellite spectroscopy as a tool of temperature diagnostics at KALIF. Nucl. Instr. Meth. Phys. Res. A 415, 576580.CrossRefGoogle Scholar
Hasegawa, J., Yokoya, N., Kobayashi, Y., Yoshida, M., Kojima, M., Sasaki, T., Fukuda, H., Ogawa, M., Oguri, Y. & Murakami, T. (2003). Stopping power of dense helium plasma for fast heavy ions. Laser Part. Beams 21, 711.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1990). Energy loss of heavy ions in a plasma target. Phys. Rev. A 42 23132321.CrossRefGoogle Scholar
Limpouch, J., Klimo, O., Bìna, V. & Kawata, S. (2004). Numerical studies on the ultrashort pulse K-α emission sources based on femtosecond laser-target interactions. Laser Part. Beams 22, 147156.Google Scholar
Kawamura, T., Nishimura, H., Koike, F., Ochi, Y., Matsui, R., Miao, W.Y., Okihara, S., Sakabe, S., Uschmann, I., Förster, E. & Mima, K. (2002). Population kinetics on Kα lines of partially ionized Cl atoms. Phys. Rev. E 66, 016402.Google Scholar
Kawamura, T., Schlegel, Th., Nishimura, H., Koike, F., Ochi, Y., Matsui, R., Okihara, S., Sakabe, S., Johzaki, T., Nagatomo, H., Mima, K., Uschmann, I., Förster, E. & Hoffmann, D.H.H. (2003). Numerical study of Kα emission from partially ionized chlorine. J. Quant. Spectrosc. Radiat. Trans. 81, 237246.CrossRefGoogle Scholar
MacFarlane, J.J., Wang, P., Bailey, J., Mehlhorn, T.A., Dukart, R.J. & Mancini, R.C. (1993). Analysis of Kα line emission from aluminum plasmas created by intense proton beams. Phys. Rev. E 47, 27482758.Google Scholar
Moores, D.L., Golden, L.B. & Sampson, D.H. (1980). Ionisation from the 3p and 3d sublevels of highly charged ions. J. Phys. B 13, 385395.Google Scholar
Nishimura, H., Kawamura, T., Matsui, R., Ochi, Y., Okihara, S., Sakabe, S., Koike, F., Johzaki, T., Nagatomo, H., Mima, K., Uschmann, I. & Forster, E. (2003). Kα spectroscopy to study energy transport in ultrahigh-intensity laser produced plasmas. J. Quant. Spectrosc. Radiat. Trans. 81, 327337, ibid. (2004). 87, 211.CrossRefGoogle Scholar
Ogawa, M., Neuner, U., Kobayashi, H., Nakajima, Y., Nishigori, K., Takayama, K., Iwase, O., Yoshida, M., Kojima, M., Hasegawa, J., Oguri, Y., Horioka, K., Nakajima, M., Miyamoto, S., Dubenkov, V. & Murakami, T. (2000). Measurement of stopping power of 240 MeV argon ions in partially ionized helium discharge plasma. Laser Part. Beams 18, 647653.CrossRefGoogle Scholar
Oguri, Y., Tsubuku, K., Sakumi, A., Shibata, K., Sato, R., Nishigori, K., Hasegawa, J. & Ogawa, M. (2000). Heavy ion stripping by a highly-ionized laser plasma. Nucl. Instr. Meth. Phys. Res. B 161–163, 155158.CrossRefGoogle Scholar
Peter, T. & Meyer-Ter-Vehn, J. (1991). Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.Google Scholar
Peter, T. & Meyer-Ter-Vehn, J. (1991). Energy loss of heavy ions in dense plasma. II. Nonequilibrium charge states and stopping powers. Phys. Rev. A 43, 20152030.Google Scholar
Rice, R., Basbas, G. & Mcdaniel, F.D. (1977). Extended tables for plane-wave born-approximation calculations of direct coulomb ionization of the K-shell by charged particles. Atomic Data Nucl. Data Tables 20, 503511.CrossRefGoogle Scholar
Rosmej, O.N., Blazevic, A., Korostiy, S., Bock, R., Hoffmann, D.H.H., Pikuz_Jr. S.A., Efremov, V.P., Fortov, V.E., Fertman, A., Mutin, T., Pikuz, T.A., &Faenov, A.Ya. (2005). Charge state and stopping dynamics of fast heavy ions in dense matter. Phys. Rev. A 72, 052901.Google Scholar
Rosmej, O.N., Pikuz, S.A. Jr., Korostiy, S., Blazevic, A., Brambrink, E., Fertman, A., Mutin, T., Efremov, V.P., Pikuz, T.A., Faenov, A.Ya., Loboda, P., Golubev, A.A., & Hoffmann, D.H.H. (2005). Radiation dynamics of fast heavy ions interacting with matter. Laser Part. Beams 23, 7985.Google Scholar
Sampson, D.H. & Golden, L.B. (1978). Electron impact ionisation results by the Z = ∞ method. J. Phys. B 11, 541549.CrossRefGoogle Scholar
Schillinger, H., Sakabe, S., Kuge, T., Ueyama, H., Urano, T., Kawato, S., Hashida, M., Shimizu, K., Kou, J. & Izawa, Y. (1997). Triple-pass Ti:sapphire preamplier with 60 dB gain for laser systems using chirped-pulse amplification. Rev. Laser Eng. 25, 890893.CrossRefGoogle Scholar
Stöckl, C., Boine-Frankenheim, O., Geissel, M., Roth, M., Wetzler, H., Seelig, W., Iwase, O., Spiller, P., Bock, R., Süss, W. & Hoffmann, D.H.H. (1998). Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt. Nucl. Instr. Meth. Phys. Res. A 415, 558565.CrossRefGoogle Scholar