Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T14:22:40.019Z Has data issue: false hasContentIssue false

Ponderomotive force effect on plasma density profile in the underdense region

Published online by Cambridge University Press:  09 March 2009

D. P. Singh
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino 7, 56100 Pisa, Italy
M. Vaselli
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino 7, 56100 Pisa, Italy
R. Singh
Affiliation:
Istituto di Fisica Atomica e Molecolare del C.N.R., Via del Giardino 7, 56100 Pisa, Italy

Abstract

The flux transport effect on the radiation-induced plasma density profile and ablative flow outside the resonance layer in steady state in one dimensional spherical geometry studied. The numerical predictions conclude the existence of plateau-like plasma density profile rather than overdense bump formation in the underdense plasma. The plasma density profile, though retaining its shape, becomes more pronounced as the heat flux is increased. However, the length of the plasma density plateau is found to be quite small when compared with the isothermal case.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azechi, H. et al. 1977 Phys. Rev. Lett. 39, (18), 1144.CrossRefGoogle Scholar
Brueckner, K. A. & Janda, R. S. 1977 Nuclear Fusion 17, 451.CrossRefGoogle Scholar
Estabrook, K. & Kruer, W. L. 1983 Physics Fluids 26, 1888.CrossRefGoogle Scholar
Fedosejevs, R. et al. 1977 Phys. Rev. Lett. 39, (15), 932.CrossRefGoogle Scholar
Fedosejevs, R. et al. 1979 Phys. Rev. Lett. 43, (22), 1664.CrossRefGoogle Scholar
Gardner, J. H. & Bodner, S. E. 1985 Physics Fluids 29, 2672.CrossRefGoogle Scholar
Hora, H. 1969 Phys. Fluids 12, 182.CrossRefGoogle Scholar
Kidder, R. E. 1975 In Proceedings of Japan–U.S. Seminar on Laser Interaction with Matter, edited by Yamanaka, C. (Tokyo International Book Co., Tokyo), 331.Google Scholar
Lee, K. et al. 1977 Physics Fluids, 20, 51.CrossRefGoogle Scholar
Max, C. E., McKee, C. F. & Mead, W. C. 1980 Physics Fluids 23, 1620.CrossRefGoogle Scholar
Max, C. E. & McKee, C. F. 1977 Phys. Rev. Lett. 39, (21), 1336.CrossRefGoogle Scholar
Motz, H. 1979 The Physics of Laser Fusion, Academic Press, London, p. 252.Google Scholar
Mulser, P. & Van Kessel, C. 1977 Phys. Rev. Lett. 38, (16), 902.CrossRefGoogle Scholar
Mulser, P. 1979 in “Laser Plasma Interactions” Edited by Cairns, R. A. and Sanderson, J. J.Google Scholar
Powers, L. V., Montry, G. R. & Berger, R. L. 1979 Nuclear Fusion 19, (5), 659.CrossRefGoogle Scholar
Sodha, M. S., Ghatak, A. K. & Tripathi, V. K. 1976 Progress in Optics, Wolf, E., ed, (Academic Press, London) 13, 171.Google Scholar
Spitzer, L. Jr. 1962 Physics of Fully lonized Gases 2nd Eds. Interscience, New York.Google Scholar
Virmont, J., Pellat, R. & Mora, A. 1978 Physics Fluids 21, 567.CrossRefGoogle Scholar
Willi, O., Evans, R. G. & Raven, A. 1980 Physics Fluids 23, 2061.CrossRefGoogle Scholar
Xu, , Zhi-Zhan, , Yu, , Wei, & Zhang, , Wen-Qi, 1985 Phys. Rev. A. 32, (1), 659.CrossRefGoogle Scholar