Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T02:05:28.810Z Has data issue: false hasContentIssue false

Plastic plasma as a compressor of aluminum plasma at the PALS experiment

Published online by Cambridge University Press:  30 December 2011

A. Kasperczuk*
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
T. Pisarczyk
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
T. Chodukowski
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
Z. Kalinowska
Affiliation:
Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
S.Yu. Gus'kov
Affiliation:
P.N. Lebedev Physical Institute of RAS, Moscow, Russia
N.N. Demchenko
Affiliation:
P.N. Lebedev Physical Institute of RAS, Moscow, Russia
D. Klir
Affiliation:
Czech Technical University in Prague, FEE, Prague, Czech Republic
J. Kravarik
Affiliation:
Czech Technical University in Prague, FEE, Prague, Czech Republic
P. Kubes
Affiliation:
Czech Technical University in Prague, FEE, Prague, Czech Republic
K. Rezac
Affiliation:
Czech Technical University in Prague, FEE, Prague, Czech Republic
J. Ullschmied
Affiliation:
Institute of Plasma Physics ASCR, v.v.i., Prague, Czech Republic
E. Krousky
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
M. Pfeifer
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
K. Rohlena
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
J. Skala
Affiliation:
Institute of Physics ASCR, v.v.i., Prague, Czech Republic
P. Pisarczyk
Affiliation:
Warsaw University of Technology, ICS, Warsaw, Poland
*
Address correspondence and reprint request to: A. Kasperczuk, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland. E-mail: [email protected]

Abstract

In our earlier papers, we demonstrated that plasma pressure decreases with the growing atomic number of the target material. That experimentally confirmed fact brought about a question whether it would be possible to collimate the Al plasma outflow by using plastic plasma as a compressor. To prove that idea we used in our next experiments a plastic target with an Al cylindrical insert of 400 µm in diameter. The measurements were carried out at the Prague Asterix Laser System iodine laser facility. The laser provided a 250 ps (full width at half maximum (FWHM)) pulse with energy of 130 J at the third harmonic frequency (λ3 = 0.438 µm). The focal spot diameters (ΦL) 800, 1000, and 1200 µm ensured predominance of the plastic plasma amount high enough for the effective Al plasma compression. To study the Al plasma stream propagation and its interaction with plastic plasma a three-frame interferometric system and an X-ray camera were used. The experiment provided a proof that creation of the collimated Al plasma jet by action of outer plastic plasma is feasible. In order to discuss of the experimental results a thorough theoretical analysis was carried out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batani, D., Dezulian, R., Redaelli, R., Benocci, R., Stabile, H., Canova, F., Desai, T., Lucchini, G., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Rus, B., Ullschmied, J., Malka, V., Faure, J., Koenig, M., Limpouch, J., Nazarov, W., Pepler, D., Nagai, K., Norimatsu, T. & Nishimura, H. (2007). Recent experiments on the hydrodynamics of laser-produced plasmas conduced at the PALS laboratory. Laser Part. Beams 25, 127141.CrossRefGoogle Scholar
Bellan, P.M. (2005). Miniconference on astrophysical jets. Phys. Plasmas 12, 058301/1–8.CrossRefGoogle Scholar
Coker, R.F., Wilde, B.H., Foster, J.M., Blue, B.E., Rosen, P.A., Williams, R.J.R., Hartigan, P., Frank, A. & Back, C.A. (2007). Numerical simulations and astrophysical applications of laboratory jets at Omega. Astrophys. Space Sci 307, 5762.CrossRefGoogle Scholar
Farley, D.R., Estabrook, K.G., Glendinning, S.G., Glenzer, S.H., Remington, B.A., Shigemori, K., Stone, J.M., Wallance, R.J., Zimmerman, G.B. & Harte, J.A. (1999). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Rev. Lett. 83, 19821985.CrossRefGoogle Scholar
Hartigan, P., Foster, J.M., Wilde, B.H., Coker, R.F., Rosen, P.A., Hansen, J.F., Blue, B.E., Williams, R.J.R., Carver, R. & Frank, A. (2009). Laboratory experiments, numerical simulations, and astronomical observations of deflected supersonic jets: application to HH110. Astrophys. J. 705, 10731094.CrossRefGoogle Scholar
Hong, W., He, Y., Wen, T., Du, H., Teng, J., Qing, X., Huang, Z., Huang, W., Liu, H., Wang, X., Huang, X., Zhu, Q., Ding, Y. & Peng, H. (2009). Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse. Laser Part. Beams 27, 1926.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 177182.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Rohlena, K., Skala, J. & Hora, H. (2006). Stable dense plasma jets produced at laser power densities around 1014 W/cm2. Phys. Plasmas 13, 062704/1–8.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009 a). Influence of target material on structure of the plasma outflow produced by a party defocused laser beam. Appl. Phys. Lett. 94, 081501/1–3.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Demchenko, N.N., Gus'kov, S.Yu., Kalal, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2009 b). Experimental and theoretical investigations of mechanisms responsible for plasma jet formation at PALS. Laser Part. Beams 27, 415427.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Badziak, J., Borodziuk, S., Chodukowski, T., Gus'kov, S.Yu., Demchenko, N.N., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2010). Influence of low atomic number plasma component on the formation of laser-produced plasma jest. Phys. Plasmas 17, 114505/1–4.CrossRefGoogle Scholar
Laska, L., Krasa, J., Velyhnan, A., Joungwith, K., Krousky, E., Margarone, D., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L. & Ullschmied, J. (2009). Experimental studies of generation of similar to 100 MeV Au-ions from the laser-produced plasma. Laser Part. Beams 27, 137147.CrossRefGoogle Scholar
Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D., Hughes, S., Haines, M.G., Frank, A., Blackman, E.G. & Gardiner, T. (2002). Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564, 113119.CrossRefGoogle Scholar
Mizuta, A., Yamada, S. & Takabe, H. (2002). Numerical analysis of jest produced by intense laser. Astrophys. J. 567, 635642.CrossRefGoogle Scholar
Pisarczyk, T., Kasperczuk, A., Kalal, M., Gus'kov, S. Yu., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). Proceedings of the 35th EPS Conference on Plasma Physics.Google Scholar
Ryutov, D.D., Drake, R.P. & Remington, B.A. (2000). Criteria for Scaled Laboratory Simulations of Astrophysical MHD Phenomena. Astrophys. J. 127, 465468.CrossRefGoogle Scholar
Schopper, R., Ruhl, H., Kuzi, T.A. & Lesch, H. (2003). Kinetic simulation of the coherentradio emission from pulsars. Laser Part. Beams 23, 503512.Google Scholar
Shigemori, K., Kodama, R., Farley, D.R., Koase, T., Estabrook, K.G., Remington, B.A., Ryutov, D.D., Ochi, Y., Azechi, H., Stone, J. & Turner, N. (2000). Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. Phys. Rev. E 62, 88388841.Google ScholarPubMed
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar