Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T04:35:56.375Z Has data issue: false hasContentIssue false

Plasma expansion dynamics in the presence of a relativistic electron beam

Published online by Cambridge University Press:  19 March 2015

El-Amine Benkhelifa
Affiliation:
Faculty of Physics, Theoretical Physics Laboratory, Algiers, Algeria
Mourad Djebli*
Affiliation:
Faculty of Physics, Theoretical Physics Laboratory, Algiers, Algeria
*
Address correspondence and reprint requests to: Mourad Djebli, Faculty of Physics, Theoretical Physics Laboratory, USTHB, B.P. 32 Bab-Ezzouar, 16079 Algiers, Algeria. E-mail: [email protected]

Abstract

The dynamics of an electron–ion plasma is studied when a mono-energetic relativistic electron beam penetrates the expanding plasma. Combined effects of thermal pressure and ambipolar electrostatic potential are considered for fully relativistic multi-fluids model where the quasi-neutrality assumption is used for a beam–plasma system. Relativistic effects are considered for both density and velocity of the beam fluid. Ion acceleration is depicted through a spike-like structure resulting from non-local charge separation and associated with the beak-down of quasi-neutrality. The beam initial speed is found to enhance the spike amplitude and change its position. Moreover, relativistic effects are particularly found significant for a non-thermal plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhieze, A.I. & Fainberg, Y.B. (2008). On the interaction of charged particle beams with electron plasma. Ukr. J. Phys. 53, 87.Google Scholar
Benkhelifa, E. & Djebli, M. (2014). Relativistic effects on plasma expansion. Phys. Plasmas 21, 074505.CrossRefGoogle Scholar
Bingham, R., Mendonça, J.T. & Shukla, P.K. (2004). Plasma based charged-particle accelerators. Plasma Phys. Control. Fusion 46, R1.CrossRefGoogle Scholar
Boris, D.R., Petrov, G.M., Lock, E.H., Fernsler, R.F. & Walton, S.G. (2013). Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration. Plasma Sour. Sci. Technol. 22, 065004.CrossRefGoogle Scholar
Djebli, M., Bahamida, S. & Annou, R. (2002). Dust grain acceleration during plasma expansion. Phys. Status Solidi b 9, 4107.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252.CrossRefGoogle Scholar
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. (2006). Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737.CrossRefGoogle ScholarPubMed
de Jagher, P.C., Sluijter, F.W. & Hopman, H.J. (1988). Relativistic electron beams and beam–plasma interaction. Phys. Rep. 167, 177.CrossRefGoogle Scholar
Kapetanakos, C. & Hammer, D.A. (1973). Plasma heating by an intense relativistic electron beam. Appl. Phys. Lett. 23, 17.CrossRefGoogle Scholar
Kovtun, R.I. & Rukhadze, A.A. (1970). Nonlinear interaction of a low-density relativistic electron beam with a plasma. Sov. Phys. JETP 31, 915.Google Scholar
Kumar, N. & Pukhov, A. (2008). Self-similar quasi-neutral expansion of a collisionless plasma with tailored electron temperature profile. Phys. Plasma 15, 053103.CrossRefGoogle Scholar
Lee, N.C. (2008). Ion acoustic solitary waves in relativistic plasma. Phys. Plasmas 15, 022307.CrossRefGoogle Scholar
Li, D.Z., Gao, J., Yan, W.C. & Chen, L.M. (2013 a). Monoenergetic electron beams with ultralow normalized emittance generated from laser–gas interaction. Proc. IPAC. Beijing, p. 1196.Google Scholar
Li, F., Hua, J.F., Xu, X.L., Mori, W.B. & Gu, Y.Q. (2013 b). Generating high-brightness electron beams via ionization injection by transverse colliding laser in plasma-wakefield accelerator. Phys. Rev. Lett. 111, 015003.CrossRefGoogle ScholarPubMed
Liu, C.S. & Tripathi, V.K. (1994). Interaction of Electromagnetic Waves with Electron Beams and Plasmas. Singapore: World Scientific.CrossRefGoogle Scholar
Malka, V., Faure, J., Gauduel, Y.A., Lefebvre, E., Rousse, A. & Phuoc, K.T. (2008). Principles and application of compact laser-plasma accelerators. Nat. Phys. (b) 4, 447.CrossRefGoogle Scholar
Mangles, S.P.D., Thomas, A.G.R., Kaluza, M.C., Lundh, O., Lindau, F., Persson, A., Tsung, F.S., Najmudin, Z., Mori, W.B., Wahlstrom, C.-G. & Krushelnick, K. (2006). Laser-wakefield acceleration of mono-energetic electron beams in the first plasma wave-period. Phys. Rev. Lett. 96, 215001.CrossRefGoogle Scholar
Mitrani, J.M., Kaganovich, I.D. & Davidson, R.C. (2014). Mitigating chromatic effects on the transvers focusing of intense charged particle beams for heavy ion fusion. Nucl. Instrum. Methods Phys. Res. A 65, 733.Google Scholar
Molokovsky, S.I. & Sushkov, A.D. (2005). Intense Electron and Ion Beams. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Nersisyan, H.B. & Deutsch, C. (2014). Stopping of relativistic electron beam in a plasma irradiated by an intense laser field. Laser Part. Beams 32, 2014157.CrossRefGoogle Scholar
O'Connell, C., Decker, F-J., Hogan, M.J., Iverson, R., Raimondi, P., Siemann, R.H., Walz, D., Blue, B., Clayton, C.E., Joshi, C., Marsh, K.A., Mori, W.B., Wang, S., Katsouleas, T., Lee, S. & Muggli, P. (2002). Dynamic focusing of an electron beam through a long plasma. Phys. Rev. ST. Accel. Beam 5, 011301.Google Scholar
Pikin, A., Beebe, E.N. & Reparia, D. (2013). Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source. Rev. Sci. Instrum. 84, 033303.CrossRefGoogle ScholarPubMed
Sack, Ch. & Schamel, H. (1987). Plasma expansion into vacuum – a hydrodynamic approach. Phys. Rep. b 156, 311.CrossRefGoogle Scholar
Thumm, M.K.A. & Arzhannikov, A.V. (2014). Generation of high-power sub-THZ waves in magnetized turbulent electron beam plasmas. Millim. Terahertz Waves 35, 81.CrossRefGoogle Scholar
Vafaei-Najafabadi, N., Marsh, K.A., Clayton, C.E., An, W., Mori, W.B., Joshi, C., Lu, W., Adli, E., Corde, S., Litos, M., Li, S., Gessner, S., Frederico, J., Fisher, A.S., Wu, Z., Walz, D., England, R.J., Delahaye, J.P., Clarke, C.I., Hogan, M.J. & Muggli, P. (2014). Beam loading by distributed injection of electrons in a plasma wakefield accelerator. Phys. Rev. Lett. 122, 025001.CrossRefGoogle Scholar
Zhu, J., Yu, H., Jiang, X., Cheng, N. & Wang, Y. (2010). Target-plasma expansion induced by 20-MeV intense electron beam. IEEE. Trans. Plasma Sci. 38, 10.CrossRefGoogle Scholar