Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-16T20:19:55.416Z Has data issue: false hasContentIssue false

Plasma electron-electron collision effects in proton self-retarding and vicinage forces

Published online by Cambridge University Press:  06 March 2006

MANUEL D. BARRIGA-CARRASCO
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
GILLES MAYNARD
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université Paris XI, Orsay Cedex, France

Abstract

This paper presents theoretical results for the influence of plasma electron-electron collisions in correlated proton stopping forces. First calculations of the effects of these collisions on the vicinage forces for plasma matter are shown. In particular, these effects are studied in a Te = 10 eV and n = 1023 cm−3 plasma yielding a self-retarding proton force increased more than 11% at maximum value. Also vicinage forces enhances more than 15% in the analyzed cases. All this implies that plasma electron-electron collisions play an important role both in non and correlated ion stopping and must be considered for any application of ion energy deposition in plasma matter.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barriga-Carrasco, M.D. & Garcia-Molina, R. (2003). Vicinage forces between molecular and atomic fragments dissociated from small hydrogen clusters and their effects on energy distributions. Phys. Rev. A 68, 062902.Google Scholar
Barriga-Carrasco, M.D. & Garcia-Molina, R. (2004). Simulation of the energy spectra of original versus recombined H2+ molecular ions transmitted through thin foils. Phys. Rev. A 70, 032901.Google Scholar
Barriga-Carrasco, M.D., Maynard, G. & Kurilenkov, Yu. (2004). Influence of transverse diffusion within the proton beam fast ignitor scenario. Phys. Rev. E 70, 066407 (9).Google Scholar
Barriga-Carrasco, M.D. & Maynard, G. (2005). A 3D trajectory numerical simulation of the transport of energetic light ion beams in plasma targets. Laser Part. Beams 23, 211217.Google Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi O., MacKinnon, A.J., Gizzi, L.A., Galimberti, M., Clarke, R.J., &Ruhl, H. (2001). Proton imaging: A diagnostic for inertial confinement fusion/fast ignitor studies. Plasma Phys. Cont. Fusion 43, A267276.Google Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.Google Scholar
Breschi, E., Borghesi, M., Galimberti, M., Giulietti, D., Gizzi, L.A., Romagnani, G., Schiavi, A. & Willi, O. (2004). Spectral and angular characterization of laser-produced proton beams from dosimetric measurements. Laser Part. Beams 22, 393397.Google Scholar
Deutsch, C. (1990). Interaction of ion cluster beams with cold matter and dense-plasmas. Laser Part. Beams 8, 541553.Google Scholar
Deutsch, C. (1992). Ion cluster interaction with cold targets for ICF: Fragmentation and stopping. Laser Part. Beams 10, 217226.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Deutsch, C., Bret, A. & Fromy, P. (2005). Mitigation of electromagnetic instabilities in fast ignition scenario. Laser Part. Beams 23, 58.Google Scholar
Eliezer, S., Martinez Val, J.M. & Deutsch, C. (1995). Inertial fusion-targets driven by cluster ion-beam: The hydrodynamic approach. Laser Part. Beams 13, 4369.Google Scholar
Garcia-Molina, R. & Barriga-Carrasco, M.D. (2003). Simulation of the molecular recombination yield for swift H2+ ions through thin carbon foils. Phys. Rev. A 68, 054901.Google Scholar
Fermi, E. (1924). Concerning the theory of impact between atoms and electrically charged particles. Z. Phys. 29, 315327.Google Scholar
Kanapathipillai, M. (2006). Nonlinear absorption of ultra-short laser pulses by clusters. Laser Part. Beams 24, 9.Google Scholar
King, N.S.P., Ables, E., Adams, Ken, Alrick, K.R., Amann, J.F., Balzar, S., Barnes Jr., P.D., Crow, M.L., Cushing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., London, R.K., Lopez, R.R., McDonald, T.E., McClelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics, P.D., Pillai, C., Riedel, C.M., Sarracino, J.S., Shelley Jr., F.E., Stacy, H.L., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J., Ziock, H.-J. & Zumbro, J.D. (1999). An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instr. Meth. A 424, 8491.Google Scholar
Lindhard, J. (1954). On the properties of a gas of charged particles. K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 28, 157.Google Scholar
Lindhard, J. & Winther, A. (1964). Stopping power of electron gas and equipartition rule. K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 34, 122.Google Scholar
Mazarro, A., Echenique, P.M. & Ritchie, R.H. (1983). Charged-particle wake in the radom-phase approximation. Phys. Rev. B 27, 41174128.Google Scholar
Mermin, N.D. (1970). Lindhard dielectric function in the relaxation-time approximation. Phys. Rev. B 1, 23622363.Google Scholar
Neelavathi, V.N., Ritchie, R.H. & Brandt, W. (1974). Bound electron states in wake of swift ions in solids. Phys. Rev. Lett. 33, 302305.Google Scholar
Neufeld, L. & Ritchie, R.H. (1955). Passage of charged particles through plasma. Phys. Rev. 98, 16321642.Google Scholar
Pegoraro, F., Atzeni, S., Borghesi, M., Bulanov, S., Esirkepov, T., Honrubia, J., Kato, Y., Khoroshkov, V., Nishihara, K., Tajima, T., Temporal, M. & Willi, O. (2004). Production of ion beams in high-power laser-plasma interactions and their applications. Laser Part. Beams 22, 1924.Google Scholar
Peter, Th. & Meyer-ten-Vehn, J. (1991). Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power. Phys. Rev. A 43, 19982014.Google Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrasfast proton beam. Phys. Rev. Lett. 91, 125004.Google Scholar
Röpke, G. & Wierling, A. (1998). Dielectric function of a two-component plasma including collisions. Phys. Rev. E 57, 70757085.Google Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.Google Scholar
Selchow, A. & Morawetz, K. (1999). Dielectric properties of interacting storage ring plasmas. Phys. Rev. E 59, 10151023.Google Scholar
Spitzer, L. (1961). Physics of Fully Ionized Gases. New York: Interscience publishers.
Spreiter, Q., Seurer, M. & Toepffer, C. (1995). Relaxation in a strongly coupled particle beam. Nucl. Instr. Meth. A 364, 239242.Google Scholar
Tahir, N.A., Lutz, K.J., Geb, O., Maruhn, J.A., Deutsch, C. & Hoffmann, D.H.H. (1997). Inertial confinement fusion using hohlraum radiation generated by heavy-ion clusters. Phys. Plasmas 4, 796816.Google Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.G. (1995). Stopping power of heavy ions in strongly coupled plasmas. Laser Part. Beams 13, 311319.Google Scholar
Zwicknagel, G. & Deutsch, C. (1996). Basic features of correlated ion stopping in plasmas. Laser Part. Beams 14, 749763.Google Scholar
Zwicknagel, G., Toepffer, C. & Reinhard, P.G. (1999). Stopping of heavy ions in plasmas at strong coupling. Physics Rep. 309, 117208.Google Scholar