Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T01:29:40.834Z Has data issue: false hasContentIssue false

Physics of dense plasma research at MPQ

Published online by Cambridge University Press:  09 March 2009

S. Witkowski
Affiliation:
Max-Planck-Institut für Quantenoptik, D-8046 Garching, Federal Republic of Germany

Abstract

The main tool for the laser plasma work at MPQ (Max-Planck-Institut für Quantenoptik) is the ASTERIX iodine laser delivering 300 J/300 ps pulses at 1·3 m, operational also at 2ω and 3ω. A fifth 30-cm diameter am lifier is under construction to increase the pulse energy up to 2 kJ.

Soft X-ray radiation emitted by laser plasmas and its influence on energy transport and hydrodynamics is studied. Time and space resolved spectroscopic measurements of soft X-radiation from a variety of targets are compared with analytical models and computer results. Planck radiation is produced in gold cavities to study radiation hydrodynamics. Theoretical work comprises shock waves in solids, the electronic structure of very high density matter, radiation pumped X-ray laser and development of the appropriate computer codes.

Estimates indicate that dense plasmas with temperatures of several ten keV can be produced with the heavy ion accelerator now under construction at GSI-Darmstadt. Experiments are being prepared to be started in 1991. Measurements at the present UNILAC-accelerator confirm the theoretical prediction that the energy loss of heavy ions in a plasma is much higher than in cold matter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, R. C. & Meyer-Ter-Vehn, J. 1987 Rep. Progr. Phys. 50, 559606.Google Scholar
Arnold, R. C. & Meyer-Ter-Vehn, J. 1988 Z. Phys. D 9, 6578.Google Scholar
Eidmann, K. et al. 1987 Radiative Properties of Hot Dense Matter III, Rozsnyai, B. et al. , Eds. 136153, World Scientific Publishing Co., Singapore.Google Scholar
Goldman, S. R. & Schmalz, R. 1987 Phys. of Fluids 30, 36083615.Google Scholar
Goodwin, D. G. & Fill, E. E. 1988 J. Appl. Phys. 64, 1005.Google Scholar
Herrmann, P. et al. 1986 Z. Naturforsch. 41a, 767768.Google Scholar
Hoffmann, D. H. H. et al. 1988 Z. Phys. A 330, 339340.Google Scholar
Meyer-Ter-Vehn, J. & Schmalz, R. 1987 Z. Naturforsch. 42a, 10961100.Google Scholar
Meyer-Ter-Vehn, J. & Zittel, W. 1988 Phys. Rev. B. 37, 86748688.CrossRefGoogle Scholar
Mochizuki, T. et al. 1987 Nuclear Fusion Supplement Vol. 3, p. 25.Google Scholar
Nardi, E. & Zinamon, Z. 1982 Phys. Rejv. Lett. 49, 12511254.CrossRefGoogle Scholar
Pakula, R. & Sigel, R. 1986 Z. Naturforsch. 41a, 463467.CrossRefGoogle Scholar
Peter, Th., Arnold, R. C. & Meyer-Ter-Vehn, J. 1986 J. Phys. Rev. Lett., 57, 18591862.Google Scholar
Ramis, R., Schmalz, R. & Meyer-Ter-Vehn, J., 1988 Comp. Phys. Communications 49, 475505.Google Scholar
Schwanda, W. 1988 Lab. Rep. MPQ 135 Max-Planck-Institut für Quantenoptik, 8046 Garching, FRG.Google Scholar
Tsakiris, G. D. & Eidmann, K. J. 1987 J. Quant. Spectrosc. Radiat. Transfer 38, 353368.Google Scholar