Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:06:07.640Z Has data issue: false hasContentIssue false

Persistence of the Polarization in a Fusion Process

Published online by Cambridge University Press:  22 March 2011

J.-P. Didelez*
Affiliation:
IPN, CNRS/IN2P3 & Université Paris-Sud (UMR-CNRS 8608), Orsay, France
C. Deutsch
Affiliation:
LPGP, Université Paris-Sud (UMR-CNRS 8578), Orsay, France
*
Address correspondence and reprint requests to: J.-P. Didelez, IPN, CNRS/IN2P3 & Université Paris-Sud (UMR-CNRS 8608), Bât. 100, F-91406 ORSAY, France. E-mail: [email protected]

Abstract

We propose an experiment to test the persistence of the polarization in a fusion process, using a terawatt laser hitting a polarized high density (HD) target. The polarized protons and deuterons heated in the plasma induced by the laser have a significant probability to fuse producing a 3He and a γ-ray or a neutron in the final state. The angular distribution of the radiated γ-rays and the change in the corresponding total cross-section are related to the polarization persistence, but the resulting signal turns out to be weak. By comparison, the neutrons are produced hadronically with a larger cross-section and it is much easier to detect them. A significant reduction of the cross-section by parallel polarization of the deuterons as well as a structured angular distribution of the emitted neutrons is reliably predicted by the theory. Therefore, it is expected that the corresponding signal on the neutron counting rate could be seen experimentally. Magnetic fields, relaxation times and possibilities of local investigations are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ad'yasevich, B.P., Antonenko, V.G. & Fomenko, D.E. (1969). Partial wave analysis of polarized d + d collisions. Sov. J. Nucl. Phys. 9, 167.Google Scholar
Bettane, J. (2010). Prototype et démonstrateur détecteur Neutrons CLAS12. IPN Orsay Report.Google Scholar
Bouchigny, S., Didelez, J.P. & Rouillé, G. (2005). Distillation and polarization of HD. In Proceedings of the PST05 Workshop (Uesaka, T., Sakai, H., Yoshimi, A and Asahi, K., Eds.). Tokyo, Japan: World Scientific, Singapore, 6771.Google Scholar
Bouchigny, S., Didelez, J.P., Dubois, F. & Rouillé, G. (2009). Distillation of HD gas and measurement of spin-lattice relaxation times. Nucl. Inst. Meth. A 607, 271278.CrossRefGoogle Scholar
Deltuva, A., Fonseca, A.C. & Sauer, P.U. (2008). Four-nucleon system with Δ-isobar excitation. Phys. Lett. B 660, 471477.CrossRefGoogle Scholar
Deltuva, A. & Fonseca, A.C. (2010). Polarization observables and spin-aligned fusion rates in 2H(d,p) 3H and 2H(d,n) 3He reactions. Phys. Rev. C 81, 054002/1–6.CrossRefGoogle Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1997). Interaction physics of the fast igniter concept. Laser Part. Beams 15, 557564.Google Scholar
Deutsch, C. (2004). Mitigation of the Weibel instability in the interaction of relativistic electrons with ultra dense plasmas. Laser Part. Beams 22, 115120.CrossRefGoogle Scholar
Didelez, J.P. (1994). A polarized HD target for nuclear physics experiments with real photons. Nucl. Phys. News 4, 1014.CrossRefGoogle Scholar
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Philadelphia: Institute of Physics.CrossRefGoogle Scholar
Engels, R., Kröll, L., Nikolaev, N., Rathmann, F., Ströher, H., Chernov, N., Kochenda, L., Kravtsov, P., Trofimov, V., Vasilyev, A., Grigoryev, K., Mikirtytchiants, M., Kiselev, S., Marusina, M. & Paetzgen, , Shieck, H. (2010). Fusion of polarized deuterons. This HIF2010 Conference.Google Scholar
Floux, F., Cognard, D., Denoeud, L.G., Piar, G., Parisot, D., Bobin, J.L., Delobeau, F. & Fauquignon, C. (1970). Nuclear fusion reactions in solid-deuterium laser-produced plasma. Phys. Rev. A 1, 821824.CrossRefGoogle Scholar
Hofmann, H.M. & Fick, D. (1984). Fusion of polarized deuterons. Phys. Rev. Lett. 52, 20382040.Google Scholar
Honig, A. (1967). Highly spin-polarized proton samples – large, accessible and simply produced. Phys. Rev. Lett. 19, 10091010.CrossRefGoogle Scholar
Kato, S., Nakamura, T., Mima, K., Sentoku, Y., Nagatomo, H. & Owadano, Y. (2004). Generation of quasistatic Magnetic field in the relativistic laser-plasma interactions. J. Plasma Fusion Res. 6, 658661.Google Scholar
Khori, H. (2010). Spin physics at spring-8-recent results. Proceedings of the SPIN2010 Conference, Jülicht, Germany.Google Scholar
Konijnenberg, M. (1990). Exchange currents in the radiative capture of thermal neutrons by protons and deuterons. PhD Thesis, Technical University Delft, ECN-R-90-1 Report, 1–89.Google Scholar
Kulsrud, R.M., Furth, H.P., Valeo, E.J. & Goldhaber, M. (1982). Fusion reactor plasmas with polarized nuclei. Phys. Rev. Lett. 49, 12481251.Google Scholar
Mima, K., Tajima, T. & Leboeuf, J.N. (1978). Magnetic field generation by the Rayleigh-Taylor instability. Phys. Rev. Let. 41, 17151719.CrossRefGoogle Scholar
More, R.M. (1983). Nuclear spin-polarized fuel in inertial fusion. Phys. Rev. Lett. 51, 396399.Google Scholar
Paetz gen Schieck, H. (2010). The status of “polarized fusion.” Eur. Phys. J. A 44, 321354.CrossRefGoogle Scholar
Pretzler, G., Saemann, A., Pukhov, A., Schätz, T., Thirolf, P., Habs, D., Eidmann, K., Tsakiris, G.D., Meyer-ter-Vehn, J. & Witte, K.J. (1998). Neutron production by 200 mJ ultrashort laser pulses. Phys. Rev. E 58, 11651168.CrossRefGoogle Scholar
Schmid, G.J., Chasteler, R.M., Laymon, C.M., Weller, H.R., Prior, R.M. & Tilley, D.R. (1995). Polarized proton capture by deuterium and 2H(p,γ) 3He astrophysical S factor. Phys. Rev. C 52, R1732R1735.CrossRefGoogle ScholarPubMed
Schollmeier, M., Roth, M., Blazevic, A., Brambrink, E., Cobble, J.A., Fernandez, J.C., Flippo, K.A., Gautier, D.C., Habs, D., Harres, K., Hegelich, T., Hoffmann, D.H.H., Letzring, S., Nürnberg, F., Schaumann, G., Schreiber, J. & Witte, K. (2007). Laser ion acceleration with micro-grooved targets. Nucl. Inst. and Meth. 577, 186190.CrossRefGoogle Scholar
Skopic, D.M., Weller, H.R., Roberson, N.R. & Wender, S.A. (1979). 2H(p,γ) 3He reaction using polarized and un-polarized protons. Phys. Rev. C 19, 601609.Google Scholar
Snavely, R.A., Key, M.H., Hatchett, S.P., Coiwan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johson, J., Perry, M.D. & Cambell, E.M. (2000). Intense high-energy proton beams from petawatt irradiation of solids. Phys. Rev. Lett. 85, 29452948.CrossRefGoogle ScholarPubMed
Sudan, R.N. (1993). Mechanism for the generation of 109 G magnetic fields in the interaction of ultraintense short laser pulse with an overdense plasma target. Phys. Rev. Lett. 70, 30753078.CrossRefGoogle ScholarPubMed
Tanaka, M., Kunimatsu, T., Fujiwara, M., Khori, H., Ohta, T., Utsuro, M., Yosoi, M., Fukuda, K., Takamatsu, K., Ueda, K., Didelez, J.P., Frossati, G. & de Waard, A. (2010). Nuclear spin imaging by using hyperpolarized nuclei created by brute force method. Proceedings of the SPIN2010 Conference, Jülicht, Germany. To appear in JPCS.Google Scholar
Viviani, M., Schiavilla, R. & Kievsky, A. (1996). Theoretical study of the radiative capture reactions. 2H(n,γ) 3H and 2H(p,γ) 3He at low energies. Phys. Rev. C 54, 534553.Google Scholar
Zepf, M., Castro-Colin, M., Chambers, D., Preston, S.G., Wark, J.S., Zhang, J., Danson, C.N., Neely, D., Norreys, P.A., Dangor, A.E., Dyson, A., Lee, P., Fews, A.P., Gibbon, P., Moustaizis, S. & Key, M.H. (1996). Measurents of the hole boring velocity from Doppler shifted harmonic emission from solid targets. Phys. Plasmas 3, 32423244.CrossRefGoogle Scholar
Zhang, J.S., Liu, K.F. & Shuy, G.W. (1985). Fusion reactions of polarized deuterons. Phys. Rev.Lett. 55, 1649.Google Scholar