Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T11:02:04.067Z Has data issue: false hasContentIssue false

PBFA II ion diode theory and implications

Published online by Cambridge University Press:  09 March 2009

J. P. Vandevender
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, USA
S. A. Slutz
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, USA
D. B. Seidel
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, USA
R. S. Coats
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, USA
P. A. Miller
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, USA
C. W. Mendel Jr.
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, USA
J. P. Quintenz
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, USA

Abstract

Fully electromagnetic, relativistic, two-dimensional, particle-in-cell (PIC) simulations of barrel-type and extractor-type Applied-B ion diodes have increased our confidence in the design of present and future diodes for the Particle Beam Fusion Accelerator II (PBFA II). In addition, the data from various experiments on Pro to I, Proto II, and PBFA I Applied-B ion diodes are inconsistent with previous models of diode operation, based on anode-cathode gap closure from expanding plasmas. A new model has been devised and applied to the PBFA II diode to explain the diode impedance and its time history, and to suggest methods for controlling the impedance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crow, J. T. & Vandevender, J. P. Sandia National Laboratories (private communication).Google Scholar
Davidson, R. C. & Tsang, K. T. 1984 Phys. Rev. A30, 488.CrossRefGoogle Scholar
Dreike, P. L. & Miller, P. A. 1985 J. Appl. Phys. 57, 1589.CrossRefGoogle Scholar
Dreike, P. L. et al. 1985 Sandia National Laboratories (private communications).Google Scholar
Freeman, J. R. 1981 J. Comp. Phys. 41, 142.CrossRefGoogle Scholar
Gerber, R. A. et al. 1985 IEEE Trans, on Nucl. Sci. NS-32, 1718.CrossRefGoogle Scholar
Goldstein, S. A. & LEE, R. 1975 Phys. Rev. Lett. 35, 1079.CrossRefGoogle Scholar
Goplen, B. et al. 1983User's Manual for MAGIC” Mission Research Corporation Document #MRC-WDC-R-068, Alexandria, VA.Google Scholar
Johnson, D. J. et al. 1985a J. Appl. Phys. 57, 794.CrossRefGoogle Scholar
Johnson, D. J. et al. 1985b J. Appl. Phys. 58, 12.CrossRefGoogle Scholar
Maenchen, J. E. et al. 1986 Proc. of the 6th Intl. Conf. on High Power Particle Beams, Kobe, Japan (to be published).Google Scholar
Maron, Y. et al. 1987 LPS Report 366, Laboratory of Plasma Studies, Cornell University, Ithaca, NY.Google Scholar
Mendel, C. W. & Goldstein, S. A. 1977 J. Appl. Phys. 48, 1004.CrossRefGoogle Scholar
Mendel, C. W. et al. 1987 Sandia National Laboratories (to be published).Google Scholar
Mendel, C. W. et al. 1985 Phys. Rev. A32, 1091.CrossRefGoogle Scholar
Miller, P. A. 1985 J. Appl. Phys. 57, 1473.CrossRefGoogle Scholar
Miller, P. A. & Mendel, C. W. 1985 Bull. Am. Phys. Soc. 30, 1513 & 1986 submitted to J. Appl. Phys.Google Scholar
Olson, R. E. 1985 Proc. of 11th Symp. of Fusion Eng.,Austin, TX.Google Scholar
Ottinger, P. F. et al. 1984 J. Appl. Phys. 56, 774.CrossRefGoogle Scholar
Slutz, S. A. 1985 Sandia National Laboratories (private communication).Google Scholar
Slutz, S. A., Seidel, D. B. & Coates, R. S. 1987, accepted for publication in J. Appl. Physics.Google Scholar
Slutz, S. A. & Seidel, D. B. 1986 J. Appl. Phys. 59, 2685.CrossRefGoogle Scholar
Slutz, S. A. et al. 1986 J. Appl. Phys. 59, 11.CrossRefGoogle Scholar
Slutz, S. A. et al. 1984 Bull. Am. Phys. Soc. 29, 1343.Google Scholar
Turman, B. N. et al. 1985 Proc. of 5th IEEE Pulsed Power Conf.,Arlington, VA,155.Google Scholar
Vandevender, J. P. & Cook, D. L. 1986 Science 234, 837.Google Scholar
Weber, B. V. et al. 1984 Appl. Phys. Lett. 45, 1043.CrossRefGoogle Scholar
Wright, T. P. 1979 Phys. Fluids 22, 1931.CrossRefGoogle Scholar