Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T05:33:01.805Z Has data issue: false hasContentIssue false

Particle-in-cell simulations of the long proton beam focusing in background plasmas

Published online by Cambridge University Press:  08 April 2016

L.-Y. Zhang
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China China Academy of Engineering Physics – Software Center for High Performance Numerical Simulation, Beijing 100088, China
X.-Y. Zhao
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
X. Qi*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
W.-S. Duan
Affiliation:
Joint Laboratory of Atomic and Molecular Physics of NWNU & IMP CAS, Northwest Normal University, Lanzhou 730070, China
L. Yang*
Affiliation:
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Department of Physics, Lanzhou University, Lanzhou 730000, China
*
Address correspondence and reprint requests to: Xin Qi and Lei Yang, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Department of Physics, Lanzhou University, Lanzhou 730000, China. E-mail: [email protected] and [email protected]
Address correspondence and reprint requests to: Xin Qi and Lei Yang, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China and Department of Physics, Lanzhou University, Lanzhou 730000, China. E-mail: [email protected] and [email protected]

Abstract

A two-dimensional particle-in-cell simulation is carried out to study the focusing effects of the long proton beam propagating in background plasmas. It is found that the smooth beam, with the long length and the small density gradient profile, is focused to high density. The sharp beam, with long length and the large density gradient profile, is modulated into many high density and periodic short beam pulses due to the wakefield induced by the beam. In addition, increasing the plasma density and adopting the non-uniform plasmas are the effective ways to reduce the wakefield.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boine-Frankenheim, O. & D'avanzo, J. (1996). Stopping power of ions in a strongly magnetized plasma. Phys. Plasmas 3, 792799.Google Scholar
Bringa, E.M. & Arista, N.R. (1995). Collective effects in the energy loss of ion beams in fusion plasmas. Phys. Rev. E 52, 30103014.Google Scholar
Deutsch, C. & Fromy, P. (1995). Correlated ion stopping in a dense classical plasma. Phys. Rev. E 51, 632641.Google Scholar
Drake, R.P. (2006). High-Energy-Density Physica. Berlin: Springer-Verlag.Google Scholar
Franchetti, G., Hofmann, I., Fischer, W. & Zimmermann, F. (2009). Incoherent effect of space charge and electron cloud. Phys. Rev. ST Accel. Beams 12, 124401(1)124401(18).CrossRefGoogle Scholar
Goldman, S.R. & Hofmann, I. (1990). Electron cooling of high-Z ion-beams parallel to a guide magnetic-field. IEEE Trans. Plasma Sci. 18, 789796.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hu, Z.-H., Chen, M.-D. & Wang, Y.-N. (2014). Current neutralization and plasma polarization for intense ion beams propagating through magnetized background plasmas in a two-dimensional slab approximation. Front. Phys. 9, 226233.CrossRefGoogle Scholar
Hu, Z.-H., Song, Y.-H. & Wang, Y.-N. (2012). Time evolution and energy deposition for ion clusters injected into magnetized two-component plasmas. Phys. Rev. E 85, 016402(1)016402(2).Google Scholar
Hu, Z.-H., Song, Y.-H., Zhao, Y.-T. & Wang, Y.-N. (2013). Modulation of continuous ion beams with low drift velocity by induced wakefield in background plasmas. Laser Part. Beams 31, 135140.CrossRefGoogle Scholar
Kaganovich, I.D., Startsev, E.A. & Davidson, R.C. (2002). Analytical and numerical studies of heavy ion beam transport in the fusion chamber. Laser Part. Beams 20, 497502.Google Scholar
Kaganovich, I.D., Startsev, E.A. & Davidson, R.C. (2004). Nonlinear plasma waves excitation by intense ion beams in background plasma. Phys. Plasmas 11, 35463552.Google Scholar
Kaganovich, I.D., Startsev, E.A., Sefkow, A.B. & Davidson, R.C. (2007). Charge and current neutralization of an ion-beam pulse propagating in a background plasma along a solenoidal magnetic field. Phys. Rev. Lett. 99, 235002235002(4).CrossRefGoogle Scholar
Kaganovich, I.D., Stvets, G. & Startsev, E.A. (2001). Nolinear charge and current neutralization of an ion beam pulse in a pre-formed plasma. Phys. Plasmas 8, 41804192.CrossRefGoogle Scholar
Ng, A., Perror, T., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.Google Scholar
Nieter, C. & Cary, J.R. (2004). VORPAL: A versatile plasma simulation code. J. Comput. Phys. 196, 448473.Google Scholar
Renk, T.J., Mann, G.A. & Torres, G.A. (2008). Performance of a pulsed ion beam with a renewable cryogenically cooled ion source. Laser Part. Beams 26, 545554.Google Scholar
Roy, P.K., Yu, S.S. & Henestroza, E. (2005). Drift compression of an intense neutralized ion beam. Phys. Rev. L 95, 234801234801(4).CrossRefGoogle ScholarPubMed
Sefkow, A.B., Davidson, R.C. & Gilson, E.P. (2009). Simulations and experiments of intense ion beam current density compression in space and time. Phys. Plasmas 16, 056701056701(11).Google Scholar
Sorensen, A.H. & Bonderup, E. (1983). Electron cooling. Nucl. Instrum. Methods Phys. Res. 215, 2754.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnuerer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.Google Scholar
Zhang, L.-Y., Zhao, X.-Y., Qi, X., Xiao, G.-Q., Duan, W.-S. & Yang, L. (2015). Wakefield and stopping power of a hydrogen ion beam pulse with low drift velocity in hydrogen plasmas. Laser Part. Beams 33, 215220.CrossRefGoogle Scholar
Zhao, Y., Hu, Z., Cheng, R., Wang, Y., Peng, H., Golubev, A., Zhang, X., Lu, X., Zhang, D., Zhou, X., Wang, X., Xu, G., Ren, J., Li, Y., Lei, Y., Sun, Y., Zhao, J., Wang, T., Wang, Y. & Xiao, G. (2012). Trends in heavy ion interaction with plasma. Laser Part. Beams 30, 679706.Google Scholar
Zwicknagel, G. & Deutsch, C. (1997). Correlated ion stopping in plasmas. Phys. Rev. E 56, 970987.Google Scholar