Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T07:34:09.009Z Has data issue: false hasContentIssue false

Particle-in-cell simulation of two stream instability in the non-extensive statistics

Published online by Cambridge University Press:  06 June 2014

Mohammad Ghorbanalilu*
Affiliation:
Physics Department, Shahid Beheshti University, G. C., Tehran, Iran Physics Department of Azarbaijan Shahid Madani University, Tabriz, Iran
Elahe Abdollahzadeh
Affiliation:
Physics Department of Azarbaijan Shahid Madani University, Tabriz, Iran
S.H. Ebrahimnazhad Rahbari
Affiliation:
Physics Department of Azarbaijan Shahid Madani University, Tabriz, Iran
*
Address correspondence and reprint requests to: M. Ghorbanalilu, Physics Department, Shahid Beheshti University, G. C., Tehran, Iran; Physics Department of Azarbaijan Shahid Madani University, Tabriz, Iran. E-mail: [email protected]; [email protected]

Abstract

We have performed extensive one dimensional particle-in-cell (PIC) simulations to explore generation of electrostatic waves driven by two-stream instability (TSI) that arises due to the interaction between two symmetric counterstreaming electron beams. The electron beams are considered to be cold, collisionless and magnetic-field-free in the presence of neutralizing background of static ions. Here, electrons are described by the non-extensive q-distributions of the Tsallis statistics. Results shows that the electron holes structures are different for various q values such that: (i) for q > 1 cavitation of electron holes are more visible and the excited waves were more strong (ii) for q < 1 the degree of cavitation decreases and for q = 0.5 the holes are not distinguishable. Furthermore, time development of the velocity root-mean-square (VRMS) of electrons for different q-values demonstrate that the maximum energy conversion is increased upon increasing the non-extensivity parameter q up to the values q > 1. The normalized total energy history for a arbitrary entropic index q = 1.5, approves the energy conserving in our PIC simulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benedetti, C., Londrillo, P., Petrillo, V., Serafini, L., Sgattoni, A., Tomassini, P. & Turchetti, G. (2009). PIC simulations of the production of high-quality electron beams via laser-plasma interaction. Nucl. Instr. Meth. Phys. Res. A 608, S94.CrossRefGoogle Scholar
Birdsall, C.K. & Langdon, A.B. (1985). Plasma Physics via Computer Simulation. New York: McGraw-Hill.Google Scholar
Buneman, O. (1959). Dissipation of currects in ionized media. Phys. Rev. 115, 503.CrossRefGoogle Scholar
Chen, F.F. (1994). Introduction to Plasma Physics and Controlled Fusion. New York: Plenum Press.Google Scholar
Chen, X. & Li, X. (2012). Comment on Plasma oscillations and nonextensive statistics. Phys. Rev. E 86, 068401.CrossRefGoogle ScholarPubMed
Dai, J., Chen, X. & Li, X. (2013). Dust ion acoustic with q-distribution in non-extensive statistics. Astrophys. Space Sci. 346, 183.CrossRefGoogle Scholar
Dawson, J.M. (1962). One-dimensional plasma model. Phys. Fluids 5, 445.CrossRefGoogle Scholar
Dieckmann, M.E., Drury, L. & Shukla, P.K. (2006). On the ultra-relativistic two-stream instability, electrostatic turbulence and Brownian motion. New J. Phys. 8, 40.CrossRefGoogle Scholar
Fehske, H.Schneider, R. & Wei Be, A. (2008). Computational Many-Particle Physics. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Feng, Z. & Liu, L. (2010). Energy fluctuation and correlation in Tsallis statistics. Physica A 389, 237.CrossRefGoogle Scholar
Haas, F., Bret, A. & Shukla, P.K. (2009). Physical interpretation of the quantum two-stream instability. Phys. Rev. E 80, 066407.CrossRefGoogle ScholarPubMed
Startsev, E.A. & Davidson, R.C. (2006). Two-stream instability for a longitudinally compressing charged particle beam. Phys. Plasmas 13, 062108.CrossRefGoogle Scholar
Startsev, E.A., Kaganovich, I.D. & Davidson, R.C. (2014). Effects of beam-plasma instabilities on neutralized propagation of intense ion beams in background plasma. Nucl. Instr. Meth. Phys. A 733, 80.CrossRefGoogle Scholar
Tautz, R.C., Schlickeiser, R. & Lerche, I. (2007). Non-resonant kinetic instabilities of a relativistic plasma in a uniform maganetic field: Longitudinal and transverse mode coupling effects. J. Math. Phys. 48, 013302.CrossRefGoogle Scholar
Thode, L.E. & Sudan, R.N. (1973). Two-stream instability heating of plasmas by relativistic electron beams. Phys. Rev. Lett. 30, 732.CrossRefGoogle Scholar
Tsallis, C. (1988). Possible generalization of Boltzmann-Gibbs statistics. Stat. Phys. 52, 479.CrossRefGoogle Scholar
Tsallis, C. (2002). Entropic non-extensivity: A possible measure of complexity. Chaos, Solitons and Fractals. 13, 371.CrossRefGoogle Scholar
Valentini, F. (2005). Nonlinear Landau damping in non-extensive statistics. Phys. Plasmas 12, 072106.CrossRefGoogle Scholar
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83.CrossRefGoogle Scholar
Yoo, J., Rhee, T. & Ryu, C. (2007). 1D PIC simulation study of non linear beam plasma interaction. Comp. Phys. Comm. 177, 93.CrossRefGoogle Scholar
Zeba, I., Yahia, M.E., Shukla, P.K. & Moslem, W.M. (2012). Electron-hole two-stream instability in a quantum semiconductor plasma with exchange-correlation effects. Phys. Lett. A 376, 2309.CrossRefGoogle Scholar
Haeff, A.V. (1949). The electron-wave tube: A novel method of generation and amplification of microwave energy. Proc. I. R. E 37, 4.Google Scholar
Hasegawa, A. (1968). Theory of longitudinal plasma instability. Phys. Rev. 169, 204.CrossRefGoogle Scholar
Hockney, R.W. & Eastwood, J.W. (1988). Computer Simulation using Particles. London: Arrowsmith.CrossRefGoogle Scholar
Jackson, E.A. (1960). Drift instabilities in a Maxwellian plasma. Phys. Fluids 3, 786.CrossRefGoogle Scholar
Krall, N.A. & Trivelpiece, A.W. (1973). Principles of Plasma Physics. New York: McGraw-HillCrossRefGoogle Scholar
Lapenta, G., Markidis, S., Marocchino, A. & Kaniadakis, G. (2007). Relaxation of relativistic plasmas under the effect of wave-particle interaction. Astrophys. 666, 949.CrossRefGoogle Scholar
Liu, S. & Chen, X. (2011). Dispersion relation of longitudinal oscillation in relativistic plasmas with non-extensive distribution. Physica A 390, 1704.CrossRefGoogle Scholar
Liu, S., Qiu, H. & Li, X. (2012). Landau damping of dust acoustic waves in the plasma with non-extensive distribution. Physica A 391, 5795.CrossRefGoogle Scholar
Liu, Y., Liu, S.Q. & Dai, B. (2011). Arbitrary amplitude kinetic Alfven solitons in a plasma with a q-non-extensive electron velocity distribution. Phys. Plasmas 18, 092309.CrossRefGoogle Scholar
Liyan, L. & Jiulin, D. (2008). Energy fluctuations and the ensemble equivalence in Tsallis statistics. Physica A 387, 5417.Google Scholar
Pierce, J.R. (1948). Possible fluctuations in electron streams due to ions. Appl. Phys. 19, 231.CrossRefGoogle Scholar
Renyi, A. (1955). On a new axiomatic theory of probability. Acta Math. Acad. Sci. Hung. 6, 285.CrossRefGoogle Scholar
Silin, I., Sydora, R. & Sauer, K. (2007). Electron beam-plasma inter-action: Linear theory and Vlasov-Poisson simulation. Phys. Plasmas 14, 012106.CrossRefGoogle Scholar

Ghorbanalilu et al. supplementary movie

Movie 1

Download Ghorbanalilu et al. supplementary movie(Video)
Video 115.2 MB