Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T19:52:57.457Z Has data issue: false hasContentIssue false

Parameters of a fast ion jet generated by an intense ultrashort laser pulse on an inhomogeneous plasma foil

Published online by Cambridge University Press:  01 October 2004

A.A. ANDREEV
Affiliation:
Institute for Laser Physics, St. Petersburg, Russia
T. OKADA
Affiliation:
Tokyo University of Agriculture and Technology, Tokyo, Japan
K.Yu. PLATONOV
Affiliation:
Institute for Laser Physics, St. Petersburg, Russia
S. TORAYA
Affiliation:
Tokyo University of Agriculture and Technology, Tokyo, Japan

Abstract

Analysis and simulations of fast particles produced by a high-intensity short laser pulse interacting with a foil target are performed. Initially, the plasma density distribution of the foil target has a smooth gradient with the scale length of plasma density varying across it. The absorbed laser energy is transferred to fast electrons, which penetrate in the foil and are partially ejected from the foil rear. These electrons produce an electric field that causes an ion beam to be emitted from the foil. We analyze the mechanism of ion acceleration in the foil plasma and the influence of the density gradient and other laser and plasma parameters on ion acceleration. The angular distributions of the ejected electrons and ions are calculated.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A.A. & Platonov, K.Yu. (2000). Laser Part. Beams 18, 81.
Andreev, A.A., Platonov, K.Yu., Okada, T. & Toraya, S. (2003). Phys. Plasmas 10, 220.
Clark, E.L., Krushelnick, K., Davies, J.R., et al. (2000a). Phys. Rev. Lett. 84, 670.
Clark, E.L., Krushelnick, K., Davies, J.R., et al. (2000b). Phys. Rev. Lett. 85, 1654.
Clark, E.L., Krushelnick, K., Davies, J.R., et al. (2000c). Phys. Plasmas 7, 2055.
Cowan, T.E., Hunt, A.W., Phillips, T.W., et al. (2000). Phys. Rev. Lett. 84, 903.
Cowan, T.E., Ruhl, H., et al. (2002). XXVII ECLIM Book of Abstracts p. 176.
Fews, A.P., Norreys, P.A., Beg, F.N., et al. (1994). Phys. Rev. Lett. 73, 1801.
Gurevich, A.V. & Meshcherkin, A.P. (1981). Sov. Phys. JETP 53, 937.
Hatchett, S.P., Brown, C.G., Cowan, T.E., et al. (2000). Phys. Plasmas 7, 2076.
Key, M.H., Cable, M.D., Cowan, T.E., et al. (1998). Phys. Plasmas 5, 1966.
Kovalev, V.F., Bychenkov, V.Yu. & Tikhonchuk, V.T. (2001). JETP Lett. 74, 10.
Lefebvre, E. & Bonnaud, G. (1997). Phys. Rev. E 55, 1011.
Maksimchuk, A., Gu, S., Flippo, K., et al. (2000). Phys. Rev. Lett. 84, 4108.
Maksimchuk, A., Flippo, K., Umstadter, D., Bychenkov, V.Yu., Sentoku, Y. & Mima K. (2002). XXVII ECLIM Book of Abstracts. p. 79.
Meshkov, I.N. (1991). Transport of Charged Particle Beams. Novosibirsk, Nauka.
Nemoto, K., Fujii, T., Oishi, Y., et al. (2002). XXVII ECLIM Book of Abstracts. p. 113.
Pukhov, A. & Meyer-ter-Vehn, J. (1997). Phys. Rev. Lett. 79, 2686.
Pukhov, A. (2001). Phys. Rev. Lett. 86, 3562.
Ruhl, H. & Mulser, P. (1995). Phys. Lett. A 205, 388.
Sarkisov, G.S., Bychenkov, V.Yu., Novikov, V.N., et al. (1999). Phys. Rev. E 59, 7042.
Satou, K., Okada, T. & Andreev, A. (2001). Jpn. J. Appl. Phys. 40, 952.
Sentoku, Y., Liseikina, T.V., Esirkepov T.Zh., et al. (2000). Phys. Rev. E 62, 7271.
Snavely, R.A., Key, M.H., Hatchett, S.P., et al. (2000). Phys. Rev. Lett. 85, 2945.
Tanaka, K.A., Kodama, R., Fujita, H., et al. (2000). Phys. Plasmas 7, 2014.
Tikhonchuk, V.T. (2002). Phys. Plasmas 9, 1416.
Wilks, S.C. (1993). Phys. Fluids B 5, 2603.
Wilks, S.C., Langdon, A.B., Cowan, T.E., et al. (2001). Phys. Plasmas 8, 542.
Zhidkov, A., Sasaki, A. & Tajima, T. (2000). Phys. Rev. E 61, 2224.