Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T05:30:08.915Z Has data issue: false hasContentIssue false

Optimization study of a photoionization experiment of a laser-produced He-like plasma by an X-ray source

Published online by Cambridge University Press:  09 March 2009

C. A. Back
Affiliation:
Ecole Polytechnique, Laboratoire de Physique des Milieux Ionisés, 91128 Palaiseau, Cedex, France
P. Renaudin
Affiliation:
Ecole Polytechnique, Laboratoire de Physique des Milieux Ionisés, 91128 Palaiseau, Cedex, France
C. Chenais-Popovics
Affiliation:
Ecole Polytechnique, Laboratoire de Physique des Milieux Ionisés, 91128 Palaiseau, Cedex, France
J. C. Gauthier
Affiliation:
Ecole Polytechnique, Laboratoire de Physique des Milieux Ionisés, 91128 Palaiseau, Cedex, France

Abstract

A study of the effects of photoionization of a laser-produced plasma has been carried out by modeling the fluorescence of resonance lines due to cascades. The photoionization source is the X-ray M-band emission of a laser-produced high-Z plasma and it perturbs a ground state He-like aluminum plasma. Simulations have been performed to study the conditions necessary to maximize the fluorescence and guide future experiments. A collisional-radiative model is used to determine the optimal temperature and density of the pumped plasma, while hydrodynamic models are used to produce realistic plasma gradients and explore the optimum time delay of the photopumping.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babonneau, D. et al. 1991 Laser Particle Beams 9, 527.CrossRefGoogle Scholar
Back, C.A. et al. 1989 Phys. Rev. Lett. 63, 1471.CrossRefGoogle Scholar
Back, C.A. et al. 1991 Phys. Rev. A 44, 6730.CrossRefGoogle Scholar
Bar-Shalom, A. et al. 1988 Phys. Rev. A 38, 1773.CrossRefGoogle Scholar
Boehly, T. et al. 1990 Phys. Rev. A 42, 6962.CrossRefGoogle Scholar
Chenais-Popovics, C. et al. 1992 SPIE Proc. 1551, in press.Google Scholar
Chichkov, B.N. & Fill, E.E. 1989 Opt. Comm. 74, 202.Google Scholar
Elton, R.C. 1990 X-Ray Lasers (Academic Press, Boston, MA) and references therein.Google Scholar
Gäbel, K. et al. 1991, presented at the 21st ECL1M Conference,Warsaw.Google Scholar
Gauthier, J.C. et al. 1983 J. Phys. D 16, 321.Google Scholar
Gauthier, J.C. & Geindre, J.P. 1988 Laboratoire PMI, Ecole Polytechnique Report No. PMI 1974, available upon request.Google Scholar
Kania, D. et al. 1992, presented at the 21st ECLIM Conference,Warsaw.Google Scholar
Lee, R.W. et al. 1984 J. Quant. Spectrosc. Radiat. Transfer 32, 91.CrossRefGoogle Scholar
Lee, Y.T. et al. 1990 J. Quant. Spectrosc. Radiat. Transfer 43, 335.Google Scholar
Mead, W.C. et al. 1983 Phys. Fluids 26, 2316.CrossRefGoogle Scholar
Smith, C. et al. 1991 International Workshop on Radiative Properties of Hot and Dense Matter (World Scientific, Singapore).Google Scholar