Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T08:30:11.591Z Has data issue: false hasContentIssue false

Optimization for deuterium ion acceleration in foam targets by ultra-intense lasers

Published online by Cambridge University Press:  17 June 2010

M.A. Bari*
Affiliation:
Pakistan Atomic Energy Commission, Islamabad, Pakistan Laboratory of Optical Physics, Institute of Physics, CAS, China
Z.M. Sheng
Affiliation:
Laboratory of Optical Physics, Institute of Physics, CAS, China Department of Physics, Shanghai Jiao Tong University, Shanghai, China
W.M. Wang
Affiliation:
Laboratory of Optical Physics, Institute of Physics, CAS, China
Y.T. Li
Affiliation:
Laboratory of Optical Physics, Institute of Physics, CAS, China
M. Salahuddin
Affiliation:
Pakistan Atomic Energy Commission, Islamabad, Pakistan
M.H. Nasim
Affiliation:
Pakistan Atomic Energy Commission, Islamabad, Pakistan
G. Shabbir Naz
Affiliation:
Pakistan Atomic Energy Commission, Islamabad, Pakistan
M.A. Gondal
Affiliation:
Pakistan Atomic Energy Commission, Islamabad, Pakistan
J. Zhang
Affiliation:
Laboratory of Optical Physics, Institute of Physics, CAS, China Department of Physics, Shanghai Jiao Tong University, Shanghai, China
*
Address correspondence and reprint requests to: M. Abbas Bari, Pakistan Atomic Energy Commission, P. O. Box 1114, Islamabad, 44000, Pakistan. E-mail: [email protected]

Abstract

In this article, we investigate the effects of foam target composition and laser parameters on deuterium ion energy spectra with particle-in-cell simulations. We find that localized electrostatic fields with multi peaks around the surfaces of lamellar layers inside foam target are induced. These fields accelerate deuterium ions from thin foam layers by restricting the flow of hot electrons. This mechanism of ion acceleration called as bulk ion acceleration generates large number of high energy deuterium ions. Deuterons inside foam target are accelerated up to 126 MeV in case of oblique optimal angle of 30° where it is much greater than the normal laser incidence energy of 88 MeV.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Platonov, K. & Kawata, S. (2009). Ion acceleration by short high intensity laser pulse in small target sets. Laser Part. Beams 27, 449457.CrossRefGoogle Scholar
Bagchi, S., Kiran, P.P. & Bhuyan, M.K. (2008). Hotter electrons and ions from nano-structured surfaces. Laser Part. Beams 26, 259264.CrossRefGoogle Scholar
Batani, D., Antonicci, A., Pisani, F., Hall, T.A., Scott, D., Amiranoff, F., Koenig, M., Gremillet, L., Baton, S., Martinolli, E., Rousseaux, C. & Nazarov, W. (2002). Inhibition in the propagation of fast electrons in plastic foams by resistive electric fields. Phys. Rev. E 65, 066409.CrossRefGoogle ScholarPubMed
Bin, J.H., Lei, A.L., Yang, X.Q., Huang, L.G., Yu, M.Y., Yu, W. & Tanaka, K.A. (2009). Quasi-monoenergetic proton beam generation from a double-layer solid target using an intense circularly polarized laser. Laser Part. Beams 27, 485490.CrossRefGoogle Scholar
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.CrossRefGoogle Scholar
Brambrink, E., Roth, M., Blazevic, A. & Schlegel, T. (2006). Modeling of the electrostatic sheath shape on the rear target surface in short-pulse laser-driven proton acceleration. Laser Part. Beams 24, 163168.CrossRefGoogle Scholar
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745.CrossRefGoogle Scholar
Chen, M., Sheng, Z.M., Dong, Q.L., He, M.Q., Li, Y.T., Bari, M.A. & Zhang, J. (2007). Collisionless electrostatic shock generation and ion acceleration by ultraintense laser pulses in overdense plasmas. Phys. Plasmas 14, 053102.Google Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultra-intense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 1654.CrossRefGoogle Scholar
Eliezer, S., Murakaml, M. & Val, J.M.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 585592.CrossRefGoogle Scholar
Fournier, K.B., Constantin, C., Poco, J., Miller, M.C., Back, C.A., Suter, L.J., Satcher, J., Davis, J. & Grun, J. (2004). Efficient multi-KeV X-ray sources from Ti-doped aerogel targets. Phys. Rev. Lett. 92, 165005.CrossRefGoogle ScholarPubMed
Gibbon, P. & Rosmej, O.N. (2007). Stability of nanostructure targets irradiated by high intensity laser pulses. Plasma Phys. Contr. Fusion 49, 18731883.CrossRefGoogle Scholar
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Jung, R., Osterholz, J., Löwenbrück, K., Kiselev, S., Pretzler, G., Pukhov, A., Willi, O., Kar, S., Borghesi, M., Nazarov, W., Karsch, S., Clarke, R. & Neely, D. (2005). Study of electron-beam propagation through pre-ionized dense foam plasmas. Phys. Rev. Letts. 94, 195001.CrossRefGoogle Scholar
Jungwirth, K. (2005). Recent highlights of the PALS research program. Laser Part. Beams 23, 396–396.CrossRefGoogle Scholar
Kulcsár, G., Almawlawi, D., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L. & Marjoribanks, R.S. (2000). Intense picosecond X-ray Pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 51495152.CrossRefGoogle ScholarPubMed
Li, Y.T., Sheng, Z.M., Ma, Y.Y., Jin, Z., Zhang, J., Chen, Z.L., Kodama, R., Matsuoka, T., Tamppo, M., Tanaka, K.A., Tsutsumi, T., Yabuuchi, T., Du, K., Zhang, H.Q., Zhang, L. & Tang, Y.J. (2005). Demonstration of bulk acceleration of ions in ultra-intense laser interactions with low-density foams. Phys. Rev. E 72, 066404.CrossRefGoogle Scholar
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.CrossRefGoogle Scholar
Limpouch, J., Psikal, J., Andreev, A.A., Platonov, K.Y. & Kawata, S. (2008). Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams, 26, 225–34.CrossRefGoogle Scholar
Liu, M.P., Xie, B.S., Huang, Y.S., Liu, J. & Yu, M.Y. (2009). Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse. Laser Part. Beams 27, 327333.CrossRefGoogle Scholar
Mackinnon, A.J., Patel, P.K., Borghesi, M., Clarke, R.C., Freeman, R.R., Habara, H., Hatchett, S.P., Hey, D., Hicks, D.G., Kar, S., Key, M.H., King, J.A., Lancaster, K., Neely, D., Nikkro, A., Norreys, P.A., Notley, M.M., Phillips, T.W., Romagnani, L., Snavely, R.A., Stephens, R.B. & Town, R.P.J. (2006). Proton radiography of a laser-driven implosion. Phys. Rev. Lett. 97, 045001.CrossRefGoogle ScholarPubMed
Malka, V., Faure, J., Gauduel, Y.A., Lefebvre, E., Rousse, A. & Phuoc, K.T. (2009). Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4, 447.CrossRefGoogle Scholar
Morita, T., Esirkepov, T.Zh., Bulanov, S.V., Koga, J. & Yamagiwa, M. (2008). Tunable high-energy ion source via oblique laser pulse incident on a double-layer target. Phys. Rev. Lett. 100, 145001.CrossRefGoogle ScholarPubMed
Mulser, P., Kanapathipillai, M. & Hoffmann, D.H.H. (2005). Two very efficient nonlinear laser absorption mechanisms in clusters. Phys Rev Lett. 95, 103401.CrossRefGoogle ScholarPubMed
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002.CrossRefGoogle Scholar
Okihara, S., Esirkepov, T.Zh., Nagai, K., Shmizu, S., Sato, F., Hashida, M., Iida, T., Nishihara, K., Norimatsu, T., Izawa, Y. & Sakabe, S. (2004). Ion generation in a low-density plastic foam by interaction with intense femtosecond laser pulses. Phys. Rev. E 69, 026401.CrossRefGoogle Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S. & Kumar, G.R. (2003). Metal nanoplasmas as bright sources of hard X-ray pulses. Phys. Rev. Lett. 90, 115002.CrossRefGoogle ScholarPubMed
Ramakrishna, B., Wilson, P.A., Quinn, K., Borghesi, M., Pipahl, A., Willi, O., Lancia, L., Fuchs, J., Clarke, R.J., Notley, M. & Nazarov, W. (2009). Propagation of relativistic electrons in low density foam targets. Astrophys. & Space. Sci. 322 161165.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Roth, M., Cowan, T.E.Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids. Phys. Rev. Lett. 85, 2945.CrossRefGoogle ScholarPubMed
Sumeruk, H.A., Kneip, S., Symes, D.R., Churina, I.V., Belolipetski, A.V., Donnelly, T.D. & Ditmire, T. (2007). Control of Strong-Laser-Field Coupling to Electrons in Solid Targets with Wavelength-Scale Spheres. Phys. Rev. Letts. 98, 045001.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Temporal, M., Honrubia, J.J. & Atzeni, S. (2002). Numerical study of fast ignition of ablatively imploded deuterium–tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas 9, 3098.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnurer, M., Nickles, P.V., Kalashnikov, M., Risse, E., Sokollik, T., Sandner, W., Tikhonchuk, V.T. & Andreev, A.A. (2006). Quasi monoenergetic deuteron bursts produced by ultra-intense laser pulses. Phys. Rev. Lett. 96, 145006.CrossRefGoogle Scholar
Ter-Avetisyan, S., Schnurer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008). First demonstaration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part Beams 28, 637642.CrossRefGoogle Scholar
Wilks, S.C., Langgdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., Mackinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542.CrossRefGoogle Scholar
Willingale, L. (2007). Ion acceleration from high intensity laser plasma interactions. PhD thesis. London, UK: Department of Physics Imperial College London.Google Scholar
Winterberg, F. (2008). Lasers for inertial confinement fusion driven by high explosives. Laser Part. Beams 26, 127135.CrossRefGoogle Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Phys. Rev. STAB 24, 291298.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M., Bowers, K.J., Flippo, K.A., Kwan, T.J.T. & Fernandez, J.C. (2007). Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasma 14, 056706.CrossRefGoogle Scholar
Zhang, J., Li, Y.T., Sheng, Z.M., Ma, Y.Y., Jin, Z., Chen, Z.L., Kodama, R., Matsuoka, T., Tampo, M., Tanaka, K.A., Tsutsumi, T. & Yabuuchi, T. (2005). Bulk acceleration of ions in intense laser interaction with foams. Plasma Phys. & Contr. Fusion 47, B879B889.CrossRefGoogle Scholar